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Abstract—This paper describes various approaches to formalizing a certain class of limited resource
management problems, developing numerical algorithms for selecting an optimal integer solution, and
evaluating its efficiency in using it in relation with the stock market. We propose integer models and
methods for assessing these models under the deterministic or interval-type future price of assets.
Also, we present stability analysis methods for the optimal solution. The optimal choice solutions
based on the classical portfolio theory and the author’s concept are compared. Based on the compar-
ison, it is concluded that the approach and numerical method proposed below are correct and are
more efficient to apply to these optimization problems than the traditional methods and algorithms.
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INTRODUCTION
This paper considers integer single-criterion and two-criteria optimization problems of managing lim-

ited financial resources under uncertainty and risk and their solution methods. Due to the enumerative
nature of these problems, we propose branch-and-bound methods based on our original algorithms of
calculating the upper, lower, and current upper estimates for their solution. Also, we propose stability
analysis methods for the optimal solutions under the initial data variations. The mathematical framework
for the optimal choice in the stock market developed below extends the classical Markowitz–Sharpe the-
ory; for example, see [1]. The direct practical application of these models is related to choosing the opti-
mal production program of an enterprise, determining the purchase structure of material resources of an
industrial enterprise, and calculating the optimal portfolio of indivisible financial assets. The classical
optimization problem in the stock market consists of choosing assets with a total value not exceeding the
investor’s budget to maximize the return under limited risk or, conversely, minimize risk under a limited
expected return. For a financial asset, this concerns the average return over the observed time interval, and
the risk is understood as the standard deviation of the expected return from the average value. This mea-
sure of risk is based on the law of large numbers and Chebyshev’s inequality: the smaller the standard devi-
ation of the return on a financial asset the lower the probability of its deviation from the average value.

Initially, the theory of the optimal choice (e.g., see [1–5]) was developed for portfolios of financial
assets. Later on, it has been increasingly used to study and assess the efficiency of projects portfolios in the
real sector of the economy, organize wholesale purchases of heterogeneous goods for retail networks, pur-
chase material resources of production, etc. In particular, these approaches were described in [1, 6–8].

Stochastic methods and statistical data allow estimating the return and risk on a portfolio. Classical
portfolio choice models (the Markowitz model and the capital asset pricing model (CAPM)) proceed
from the assumption that the financial assets in a portfolio are infinitely divisible. Therefore, the portfolio
formation problem was settled by obtaining the shares of assets purchased in the optimal solution.

This approach is applicable if the price of a stock (or a lot of homogeneous securities) is smaller than
the investment budget. If this condition is not met, the resulting solution may not only be suboptimal but
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814 GORSKII et al.
even inadmissible. Attempts of analysts to obtain the optimal solution by rounding the solution compo-
nents far from always give the desired result. Due to this, portfolio efficiency is often analyzed using not
only continuous (classical) models but also their integer analogs [9, 10].

This problem was considered by several researchers. We mention the publications [7, 9, 11] and the
work [4], where the discrete optimal investment portfolio problem was reduced to the NP-complete Tur-
ing problem. Studies in this area were topical in the 1950s, the era of low-performance electronic comput-
ers, and were accompanied by strong interest in constructive algorithms for solving NP-complete prob-
lems. It is topical to solve this class of problems in real time and make operational adjustments not only in
the information database but sometimes in the algorithms and problem statements.

Note that in the practical optimal choice, NP-complete problems, such as the nonlinear discrete high-
dimensional problems, can be effectively solved considering the peculiarities of their statements, criteria,
and constraints; for example, see the discussion in [12, 13]. The issues of determining exact and approxi-
mate solutions of NP-hard problems were considered in [14–16]. This paper continues those investiga-
tions. We develop and verify integer variants of optimal choice models and develop a framework for deter-
mining the stability domain of optimal solutions of integer problems.

1. A MATHEMATICAL OPTIMIZATION MODEL WITHOUT RISK
The problem statement is as follows. Let an investor possess money in volume F on the time interval

[0, T]. He can purchase n types of securities in lots. Each lot contains securities (stocks) of one type. The
quantity of securities in lot i, i = , is . At the time instant t = 0, the initial price of one security of type
i is , and its future price at the time instant  is defined stochastically, equaling  with the proba-
bility Pj, . It is required to purchase lots of securities to maximize the profit obtained by selling
them at the time instant T. Formally, this problem can be written as

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

If lot i is purchased, then ; otherwise, . Problem (1.1)–(1.5) is a generalization of the well-
known knapsack problem [8].

The objective function in this problem consists of two components. The first component is the sales
proceeds of securities at the price , and the second one is the balance of the money after forming the
securities portfolio. Since F does not affect the optimal solution, we obtain the objective function

(1.6)

Problem (1.1)–(1.5) belongs to the class of discrete optimization problems with Boolean variables and
is NP-hard [8]. It can be solved using the following branch-and-bound scheme with our original algo-
rithm for calculating the upper, lower, and current upper estimates:

1. Calculation of the upper estimate. The value  is calculated for all lots of stocks. Let us renumber
all lots as follows:  … . Later financial resources will be allocated to purchase secu-
rities of the first type, then those of the second type, and so on until the residual financial resources
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become insufficient to purchase a lot of securities of type l in the amount . In this case, the integer con-
straints on the purchase of stocks of type l are not considered: the maximum possible quantity of such
securities is purchased. This quantity  is given by

(1.7)

where  is the balance of the money after purchasing the first (l – 1) lots of securities ( ).
As a result, the upper estimate is calculated as

(1.8)

2. Calculation of the lower estimate. The lower estimate is calculated as

(1.9)

Upon calculating the upper and lower estimates of the optimal portfolio return, all possible portfolios
are examined, and the current upper estimates for the next admissible portfolio are determined. These
estimates are used to discard obviously nonoptimal solutions.

3. Calculation of the current upper estimates. When examining the next possible portfolio, the current
upper estimate is calculated each time after allocating the financial resources to purchase the next lot. This
estimate consists of the profit from purchasing the securities on the allocated money and the profit from
the remaining securities obtained by the rule . If , this portfolio is not considered.

Otherwise, the next lot of stocks is included in the portfolio, and  is calculated again. Here 
denotes the current upper estimate. As a result, either the examined portfolio will be rejected or the port-
folio with a return higher than  will be formed. In this case, we take the objective function value on
the last portfolio as the lower estimate and proceed to examining the next possible portfolio. The algo-
rithm terminates either after enumerating all possible portfolios (in this case, the optimal solution will be
the one with the last value ) or after obtaining the portfolio with the objective function value .

The problem of reliably forecasting prices  arises during the practical use of the proposed solution. If
we know the distribution function of the random variables describing the possible profit for each type of
security, we choose the portfolio maximizing the expected gain or minimizing the risk of financial loss
(the standard deviation).

Another approach to this problem with the inaccurate forecasting of future asset prices is to analyze the
stability of the solution to variations of . The stability of problem (1.1)–(1.5) will be understood as the
estimated effect of variations in the future prices of securities on its solution and the objective function.
Three approaches are possible as follows.

In the first case, the minimum values of the prices  are assumed known. Then it is required to calcu-
late the maximum increase in these values without violating the optimal solution of the problem. In other
words, it is necessary to determine  such that the solution will remain the same when all  increase by
any . Here  is the right limit of the range of ε.

Let the set Xj, , where N denotes the number of admissible portfolios, be the set of all possible
solutions of the problem. Assume that they are arranged in ascending order of value

(1.10)

Suppose that the vector xi is optimal without perturbations. The optimal solution may change
with increasing  by perturbation ε. In this case, new solutions can be only the ones with numbers
exceeding l. For the optimal solution , the right limit of the range of ε is calculated from the relation
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(1.11)

We solve Eq. (1.9) by removing the parentheses and expressing ε through the parameters , , ,
and :

(1.12)

Let this minimum be reached at some . Then the procedure of increasing  for the solution  is
repeated. In a finite number of steps, the solution from the set X with the maximum upper index will
become optimal. And the further increase of all values  will not yield a new solution.

In the second case, assume that under perturbations, the prices  change according to the rule
. In this case, the general considerations remain the same, but the solutions are arranged in

ascending order of value

The increase  under which the optimal solution  will remain the same is calculated as

(1.13)

In the third case, assume that the price  takes arbitrary values from the range . In this case, the
set where the values  change can be divided into subsets . If  changes on any of the

subsets , , the optimal solution on this subset will be .

Consider the problem with   i.e., the future expected price of asset i takes an arbitrary value
from the range . In this case, generally speaking, it is impossible to uniquely arrange all assets in
descending order of the return. Therefore, we can form all admissible portfolios and then calculate  and

, , for each portfolio. Here N denotes the number of possible portfolios, whereas  and  are
the values of the objective function (1.6) under the minimum and maximum future prices of asset i,
respectively. Next, we arrange the corresponding values of the objective function on the return axis for dif-
ferent investment portfolios.

Let us choose portfolios that can be optimal for certain future prices of their assets. For this purpose,
from the set of all possible portfolios N, we select those satisfying the following conditions:

(1) , ;

(2) , ;

(3) 

We denote by  the remaining set of portfolios. Obviously, only portfolios from the set  can be opti-
mal under the future asset prices , . For each admissible portfolio j, the value of the
objective function can be written as
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(1.14)

where the Boolean vector  specifies the lots included in portfolio j.
Obviously, the set of future asset prices under which portfolio j will be optimal is given by the system of

linear inequalities

(1.15)

Below, we consider integer modifications of portfolio investment models with risk.
Note that the proposed approaches for assessing the stability of optimization models to form invest-

ment portfolios are original. They can serve both for further theoretical research and applications. In the
latter case, due to the stability domain assessment, repeated calculations can be avoided for the optimiza-
tion model under local variations of the model parameters. Since the optimization model is NP-hard, this
will reduce the response time of the decision maker to changes in the environment.

2. AN INTEGER CHOICE OPTIMIZATION MODEL WITH RISK
Consider an integer CAPM model. Its continuous modification was presented [1]. To determine the

optimal integer portfolio of this model, we propose a branch-and-bound scheme. Such a method is
needed: the transition from a continuous solution to an integer solution by rounding may cause a signifi-
cant loss of accuracy.

Assume that the list of lots containing securities of the same type is known. The volume of securities
(the quantity of stocks of each type) is given by values . Also, we know the initial prices  of
all stocks at the time instant t = 0 and the probability distribution of the future prices of all stocks at the
time instant .

Let , , be the coefficients for each type of financial asset. These coefficients are the quantita-
tive assessment of risk for each type of securities. Under these conditions, the analyst with a limited budget
F seeks to purchase lots that will maximize the expected increase  in his financial resources by selling
at the time instant  under the risk constraints on the portfolio.

We formulate an optimization problem for determining the investment portfolio under the assump-
tions given above. Let the future price of asset i be described by the distribution  with probabilities

. Then the expected future price of asset i is

In these notations, the corresponding optimization problem of the choice of the investment portfolio
can be written as follows:
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In problem (2.1)–(2.4),  if the lot  is not included in the investment portfolio, and  oth-
erwise. To obtain the optimal solution of problem (2.1)–(2.4), we have to choose lots from the set 
maximizing the objective function (2.1) subject to constraints (2.2)–(2.4).

To solve this problem, we develop the following branch-and-bound scheme.
Step 1. Calculating the upper estimate Fupp of problem (2.1)–(2.4). For this, we replace constraint (2.4)

in (2.1)–(2.4) with

(2.5)
Then problem (2.1)–(2.3) and (2.5) becomes a continuous linear programming problem, and its opti-

mal solution can be obtained using, e.g., the simplex method.

We denote by  the solution of problem (2.1)–(2.5). The objective function (2.1) on this solution is
taken as . Here,  is the optimal solution to the problem. Generally speaking,  is not an admis-
sible solution of the original problem (2.1)–(2.4): it may be not an integer. Clearly, the value of the objec-
tive function (2.1) of problem (2.1)–(2.4) on the optimal solution will not exceed .

Step 2. Calculating the lower estimate Flow of problem (2.1)–(2.4). For this, we choose some admissi-
ble solution of problem (2.1)–(2.4). The objective function (2.1) on this solution is taken as . Note that
the closer  is to , the more effectively the scheme will work in the future; if , the solution
chosen above will be optimal. If , we proceed to the next step.

Step 3. Analyzing the current upper estimates of the portfolio.
If , we form the next portfolio. During this process, the current upper estimates are calcu-

lated:

(2.6)

Here K denotes the set of lots included in the portfolio; N and  are the sets of all lots and unpur-
chased lots, respectively;  is the upper estimate of problem (2.1)–(2.4) on the set  and the volume
of financial resources

Further formation of the next portfolio occurs only under the conditions

(2.7)

(2.8)

If at least one of constraints (2.7) and (2.8) fails, we form another portfolio. If (2.7) and (2.8) hold, we
select the next lot to include in the portfolio and obtain the set of purchased lots Kl. Obviously, .

On the set Kl, we calculate  (2.6) and check conditions (2.6) and (2.7). Continuing this pro-
cedure, we arrive at the following result: either the formed portfolio is rejected or the balance of financial
resources becomes insufficient to purchase additional lots. In this case, we calculate the objective function
(2.1) on the resulting admissible solution, denoting this value by F*. If , let , and we
move to the next investment portfolio. The calculations terminate if the next correction of  yields

 or all possible portfolios have been considered. Then the optimal portfolio corresponds to the
last (largest) value .

3. THE MARKOWITZ INTEGER OPTIMIZATION MODEL 
WITH THE MINIMUM PORTFOLIO RISK CRITERION

In contrast to the classical Markowitz model [1], let the assets be purchased in lots only. We introduce
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which specifies the share of investment in the given type of assets.
In the adopted notations, the Markowitz problem on the minimum risk is written as follows:

(3.1)

(3.2)

(3.3)

(3.4)

where  is the standard deviation,  is the variance, di is the share of investment in a given type of assets,
and  is the cross covariance of the returns of assets i and j.

In problem (3.1)–(3.4),  if lot i is included in the portfolio, and  otherwise. The value ΔF
specifies the minimum possible increment of investment resources when selling the portfolio assets at the
time instant .

We describe directed enumerative search implementing the branch-and-bound scheme with our algo-
rithms for calculating the upper, lower, and current lower estimates for this problem.

Step 1. Calculate the upper estimate for the optimal value of the objective function (3.1). To do it, we
solve the auxiliary problem

(3.5)

(3.6)

(3.7)
Problem (3.5)–(3.7) is a linear programming problem with binary variables, and its objective function

value on the optimal solution will be the upper estimate  of problem (3.1)–(3.7).

We denote by  the objective function value of problem (3.5)–(3.7) on the optimal solution. If this
value is smaller than , the right-hand side of (3.3), then problem (3.1)–(3.4) has no solution. Oth-
erwise, we calculate the value of the objective function (3.1) on this solution, taking it as the upper esti-
mate  for problem (3.1)–(3.4).

Step 2. Choosing zero as the lower estimate: . In the case , we proceed to Step 3. If
, the optimal solution of the original problem is found.

Step 3. Calculating the current lower estimates for possible portfolios. Assume that the portfolio
includes lots of the set K, and

The current lower estimates for possible portfolios are calculated as follows.
First, we arrange all lots of the set  by the return on assets:

(3.8)
Then we check the inequality

(3.9)
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set of lots , we calculate the current lower estimate for the lots from the set Kl.
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The portfolio formation process terminates in one of the following cases: condition (3.9) is violated by
including a new lot in the portfolio, or the residual financial resources are insufficient to purchase at least
one of the remaining lots. In the latter case, we check the value of the objective function (3.1) on the port-
folio. If it is smaller than , we take  as the value of the objective function (3.1).

The branch-and-bound scheme stops if the next correction of  gives  or the entire
tree of possible portfolios is exhausted. Then the optimal portfolio corresponds to the last (smallest)
value .

4. THE INTEGER MODEL WITH THE MAXIMUM RETURN CRITERION 
AND A RISK CONSTRAINT

Consider the integer Markowitz model with the maximum expected return criterion and a risk con-
straint on the securities portfolio. In the adopted notations, it can be written as

(4.1)

(4.2)

(4.3)

(4.4)

We solve the integer problem (4.1)–(4.4) using the branch-and-bound scheme.
Step 1. Calculating the upper estimate for the optimal value of the objective function in problem (4.1)–

(4.4). To do it, we eliminate (4.2) and replace (4.4) by

(4.5)

In this case, the maximum return on the portfolio in problem (4.1)–(4.3) and (4.5) can be determined
through ordering lots by the ratio , ; see above.

We renumber the lots in descending order of  and find  Then we pur-
chase lots in descending order of  until all financial resources F are exhausted. Clearly, this portfolio
will be the optimal solution of problem (4.1)–(4.3), (4.5).

If the resulting portfolio also satisfies constraints (4.2) and (4.4), it will be a solution of the original
problem (4.1)–(4.4). If this condition fails, we proceed to Step 2.

Step 2. Calculating the lower estimate for the optimal value of the objective function. As the lower esti-
mate  of problem (4.1)–(4.4), we can take the value of its objective function on some admissible solu-
tion.

Step 3. Calculate the current upper estimates of the optimal value of the objective function to form the
investment portfolio. Assume that the portfolio includes lots of the set K. The current upper estimates for
possible portfolios are given by

(4.6)

Here  denotes the upper estimate of problem (4.1)–(4.4) on the set of lots .

Upon calculating the values , we check the inequality

(4.7)
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If (4.7) holds, the next lot purchase is selected, and an investment portfolio is formed with the set of
lots . If inequality (4.7) holds on the entire set Kl, the portfolio formation process continues.
Otherwise, this portfolio is rejected, and a new investment portfolio is formed.

If this procedure yields a portfolio satisfying all the constraints (4.2)–(4.4), and the value of the target
function F* on it is greater than , we take  and form a new investment portfolio.

The final step is when, after the next correction of , we obtain  or all possible portfolios
are exhausted. In this case, the optimal portfolio corresponds to the last (largest) value .

The two-criteria integer optimal choice models considered in Sections 2–4 and our methods for solv-
ing them are original. They allow optimizing securities portfolios with indivisible assets.

5. INTEGER OPTIMAL CHOICE WITH RETURN AND RISK CRITERIA: 
AN ALTERNATIVE PROBLEM STATEMENT AND THE SOLUTION METHOD

Consider an integer modification of the Markowitz model with unknown numbers of lots of the
issuer’s securities included in portfolios that differ by return, risk, and investment budget. (The problem
statement with unknown lots of homogeneous risky financial assets included in the investment portfolio
was presented, e.g., in [17].)

Such modification of the optimal portfolio investment problem requires an appropriate correction of
the variables and parameters. In the discrete Markowitz model, the desired variables are  (the number
of lots of stock i in the portfolio). The investment  in stock i is given by

(5.1)

Here  denotes the purchase (bid) price of stock i.
Recall that assets can be purchased in lots only. Therefore, the shares of investment in the portfolio are

calculated as

(5.2)

where  denotes the investor’s budget.
We introduce the change  (the investor’s budget to purchase the lots of stocks i):

(5.3)

(5.4)

(5.5)

(5.6)

where di is the average return on asset i;  is the standard deviation of the return on asset i;  is the cor-
relation coefficient of the returns on assets i and j; and  is the portfolio risk threshold.

The formal problem statement (5.3)–(5.6) allows reducing the volume of calculations: we find the
amounts  allocated to the purchase of securities instead of the share Wi of the issuers’ stocks. However,
it neglects the discrete nature of purchased lots. We therefore restrict the variables  to integers. (Recall
that  is the quantity of purchased lots of stocks i). As a result, the model with discrete purchased lots takes
the form

(5.7)
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(5.8)

(5.9)

(5.10)

(5.11)
Problem (5.7)–(5.11) is an integer nonlinear programming problem belonging to the class of NP-com-

plete Turing problems. Such problems, see the discussion above, cannot be solved numerically by known
nonlinear continuous optimization methods. This aspect was described in detail, e.g., in [18].

However, in our case, the risk constraint (5.8) is convex (a quadratic form), and criterion (5.7) is linear.
Therefore, we involve the main idea of the branch-and-bound scheme to find the optimal solution of the
problem. This idea consists in representing the domain of admissible values as a direct sum of appropriate
nonintersecting convex domains: for each of them, the optimal solution of the integer problem is obtained
by the well-known optimization methods (e.g., reduction to a linear problem).

We propose a method to find not the optimal but quasi-optimal solution of the discrete problem with
the maximum portfolio return criterion. This method is called the local optimization method for the solu-
tion of the corresponding continuous problem.

The numerical algorithm includes the following steps [19].
Step 1. The problem is solved in the continuous statement (with infinitely divisible assets). The assets

in the resulting solution are arranged in descending order of return.
Step 2. The values xi are randomly rounded up or down, and the admissibility of the solution (the con-

straints on the investment budget and risk threshold) is checked. If the solution is inadmissible, the ran-
dom experiment is repeated. Finally, an admissible integer portfolio is obtained, and the algorithm pro-
ceeds to Step 3.

Step 3. A sphere of unit radius is constructed around the admissible plan. Possible portfolios differing
from the basic portfolio (Step 1) by one for each asset in it are considered. They are arranged in descending
order of return until the resulting set of assets becomes admissible. The best admissible (quasi-optimal)
portfolio is subjected to the same procedure again.

The iterative algorithm terminates if the newly obtained portfolio differs from the previous one at most
by  percent, where  is the given accuracy threshold.

According to [19], this threshold grows with the number of financial assets in the portfolio. The greater
the number of securities the higher the accuracy will be. (The cited work considered a portfolio of possible
production programs of an enterprise, including products of assortment range, with interval-type prices
and cost determined by the market. As shown there, in the case of a production program with more than
100 products (assets), the error of the quasi-optimal solution is 5–7% compared with the optimal solution
of the integer problem obtained by a simple enumerative algorithm; moreover, the error decreases with
increasing the portfolio size).

Integer modifications of the Markowitz model retain the main features of the classical formulation,
except, of course, the infinite divisibility of assets. The integer models allow considering the effect of dis-
creteness, initial budget, and liquidity on the optimal structure of the investor’s portfolio obtained by the
classical model. In practical calculations, we estimated the effect of these factors on the portfolio structure
based on the Moscow Exchange data for the period from March 1, 2021, to November 20, 2021; see the
paper [20].

CONCLUSIONS
This paper has proposed methods to assess integer models of limited resource management. They are

used in the case of indivisible assets in the portfolio. Therefore, for such models, the classical approaches
based on the divisibility of assets are unacceptable. The proposed methods are relevant, in particular,
when selecting a set of indivisible projects, making wholesale purchases of material production resources,
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or forming portfolios of indivisible financial and tangible assets. As demonstrated, the optimal portfolio
by the risk-return criteria can be formed using integer optimization methods, particularly the branch-and-
bound scheme developed above. In the case of interval-type future prices of assets, the stability analysis
method has been proposed for the optimal portfolio.
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