

проектирования

КОНСТРУКЦИИ ИЗ ДЕРЕВА И ПЛАСТМАСС

Методические указания к лабораторным работам для обучающихся по направлению подготовки 08.03.01 Строительство

Составитель Н.Г. Серёгин

© ФГБОУ ВО «НИУ МГСУ», 2021

Москва Издательство МИСИ – МГСУ 2021 Pецензент — доцент, кандидат технических наук Φ .A. Eойтемиров, доцент кафедры металлических и деревянных конструкций НИУ МГСУ

К64 Конструкции из дерева и пластмасс [Электронный ресурс]: методические указания к лабораторным работам для обучающихся по направлению подготовки 08.03.01 Строительство / сост. Н.Г. Серёгин; Министерство науки и высшего образования Российской Федерации, Национальный исследовательский Московский государственный строительный университет, кафедра архитектурно-строительного проектирования. — Электрон. дан. и прогр. (1,4 Мб). — Москва: Издательство МИСИ — МГСУ, 2021. — Режим доступа: http://lib.mgsu.ru/ — Загл. с титул. экрана.

В методических указаниях приведены общие рекомендации к лабораторной работе по дисциплине «Конструкции из дерева и пластмасс».

Для обучающихся по направлению подготовки 08.03.01 Строительство, профиль «Промышленное и гражданское строительство».

Учебное электронное издание

Редактор *Т.Н. Донина*Корректор *В.К. Чупрова*Компьютерная правка, верстка *О.Г. Горюновой*Дизайн первого титульного экрана *Д.Л. Разумного*

Для создания электронного издания использовано: Microsoft Word 2010, Adobe InDesign CS5.5, ПО Adobe Acrobat

Подписано к использованию 19.12.2020. Объем данных 1,4 Мб.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский Московский государственный строительный университет». 129337, Москва, Ярославское ш., 26.

Издательство МИСИ — МГСУ. Тел.: (495) 287-49-14, вн. 14-23, (499) 183-91-90, (499) 183-97-95. E-mail: ric@mgsu.ru, rio@mgsu.ru

Оглавление

ОБЩИЕ МЕТОДИЧЕСКИЕ ПОЛОЖЕНИЯ	5
ФОРМЫ КОНТРОЛЯ	13
УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ	13

ОБЩИЕ МЕТОДИЧЕСКИЕ ПОЛОЖЕНИЯ

Цель освоения дисциплины «Конструкции из дерева и пластмасс» — углубление уровня освоения компетенций обучающегося в области применения в строительстве деревянных конструкций, использования методов исследования, расчета, конструирования и контроля качества конструкций различных типов.

Лабораторная работа по данной дисциплине содержит 2 раздела:

- 1. Древесина конструкционный строительный материал.
- 2. Основные физико-механические свойства древесины как конструкционного материала.

Рассмотрим часто встречаемый вид нагружения наиболее распространённых элементов деревянных конструкций, таких как балки, доски настилов и обшивок, а именно поперечный изгиб. В изгибаемом элементе от нагрузок, действующих поперёк его продольной оси, возникают изгибающие моменты M и поперечные силы Q, определяемые методами строительной механики. Например, в середине пролёта однопролётной шарнирно опёртой балки от равномерной нагрузки q возникает изгибающий момент $M = ql^2/8$, а от сосредоточенной в середине пролёта силы P — изгибающий момент равен M = Pl/4. Поперечные силы равняются опорным реакциям от нагрузок.

От действия изгибающего момента в сечениях элемента возникают напряжения изгиба σ , сжимающие в верхней половине сечения и растягивающие — в нижней. В результате элемент изгибается.

На рис. 1 показаны стандартный малый образец древесины и диаграмма его прогибов при испытании на изгиб. Эта диаграмма, как и при сжатии, примерно до середины имеет линейную форму, а затем изгибается, показывая ускоренный рост прогибов. Разрушение образца начинается с появления складок крайних сжатых волокон древесины и завершается разрывом крайних нижних растянутых волокон, в результате чего образец ломается. Средний временный предел прочности при статическом изгибе занимает промежуточное положение между его значениями при растяжении и сжатии — примерно 75 МПа.

Нормальные напряжения в сечениях изгибаемого элемента распределяются неравномерно по высоте. В начальной, расчётной, стадии древесина работает упруго, и эпюра напряжений изображается прямой линией с максимумами у кромок и нулём у нейтральной оси сечения. При дальнейшем росте напряжений сжатая часть сечения начинает работать упругоэластично, эпюра напряжений сжатия изгибается, и нейтральная ось смещается в сторону растянутой кромки. В стадии разрушения часть эпюры, показывающая сжатие, изгибается ещё больше, напряжения сжатия и растяжения достигают пределов прочности, и элемент разрушается.

Пороки древесины, длительное действие нагрузок и наличие перерезанных при распиловке волокон уменьшают прочность изгибаемых элементов из реальной древесины в той же степени, что и при сжатии, поэтому современные нормы не делают различия между расчётной прочностью древесины на сжатие и изгиб. Нормы также учитывают, что в брусьях имеется меньше перерезанных при распиловке волокон, чем в досках, а в брёвнах их нет, поэтому для таких элементов расчётные сопротивления повышены.

Кроме того, прочность при изгибе, при прочих равных условиях, зависит от формы поперечного сечения элементов и отношения $h \ / \ b$ для элементов прямоугольного сечения.

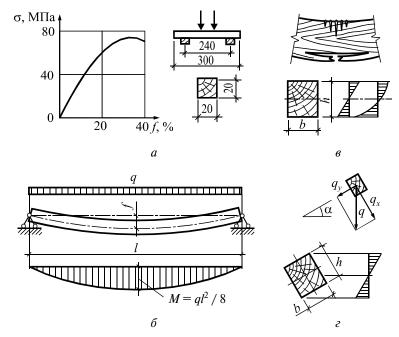


Рис. 1. Изгибаемый элемент:

a — график прогибов и образец; δ — схема работы и эпюры изгибающих моментов; ϵ — схема разрушения и эпюры нормальных напряжений; ϵ — схема работы при косом изгибе и эпюра напряжений

Изгибаемые элементы работают более надёжно, чем сжатые, и заранее предупреждают об опасности разрушения большими прогибами.

Изгибаемые элементы, как и сжатые, рекомендуется изготавливать из древесины среднего качества 2-го сорта с расчётным сопротивлением $R_{\rm u}=13~{\rm M}\Pi{\rm a}$.

В брусьях с сечениями более 130 мм расчётное сопротивление изгибу $R_{\rm u} = 15~{\rm M}\Pi{\rm a}$, а в брёвнах $R_{\rm u} = 16~{\rm M}\Pi{\rm a}$. В малоответственных элементах можно применять древесину 3-го сорта с расчётным сопротивлением $R_{\rm u} = 8,5~{\rm M}\Pi{\rm a}$.

Расчёт изгибаемых элементов по прочности поперечных сечений производится на действие максимальных изгибающих моментов $M(\mathrm{MHm})$ от расчётных нагрузок и действие поперечных сил $Q(\mathrm{\kappa H})$ по формулам:

– проверка прочности по нормальным напряжениям:

$$\sigma = \frac{M}{W_{\text{pacy}}} \le R_{_{\text{M}}}; \tag{1}$$

– проверка прочности по касательным напряжениям:

$$\tau = \frac{QS_{\text{бp}}}{I_{\text{бp}}b} \le R_{\text{ck}} \tag{2}$$

или для прямоугольного сечения:

$$\frac{1.5Q}{hh} \le R_{\rm ck},\tag{3}$$

где *М* — расчётный изгибающий момент в проверяемом сечении;

 $W_{\rm pacu}$ — расчётный момент сопротивления проверяемого сечения. При наличии ослаблений в расчётном сечении элементов $W_{\rm pacu}=W_{\rm ht}$, причём ослабления, расположенные на участке длиной до 200 мм, считаются совмещёнными в одном сечении, как при расчёте растянутых элементов;

Q — расчётная поперечная сила;

 $S_{\rm fp}$ — статический момент брутто сдвигаемой части поперечного сечения элемента относительно нейтральной оси;

 $I_{\rm бp}$ — момент инерции брутто поперечного сечения элемента относительно нейтральной оси;

h, b — расчётные размеры поперечного сечения элемента;

 $R_{\rm u}$, $R_{\rm ck}$ — расчётные сопротивления материала соответственно изгибу и скалыванию. При изгибе в сечениях элемента возникают и скалывающие напряжения τ , проверка которых проводится по формулам (2) и (3). В изгибаемых элементах при отношении h/b > 4 необходима проверка устойчивости из плоскости изгибаемых элементов (устойчивость плоской формы деформирования). Проверка устойчивости плоской формы деформирования производится по формуле

$$\frac{M}{W_{6p}} \le \varphi_{M} R_{H}, \tag{4}$$

где M — расчётный изгибающий момент на рассматриваемом участке l_{p} ;

 $W_{\rm бp}$ — максимальный момент сопротивления брутто на рассматриваемом участке $l_{\rm p}$; $\phi_{\rm M}$ — коэффициент устойчивости изгибаемых элементов.

Для изгибаемых элементов прямоугольного поперечного сечения, шарнирно закреплённых от смещения из плоскости изгиба и закреплённых от поворота вокруг продольной оси в опорных сечениях

$$\varphi_{\rm M} = 140 \frac{b^2}{l_{\rm p}h} k_{\rm \phi},\tag{5}$$

где $l_{\rm p}$ — расстояние между опорами элемента, а при наличии раскреплений сжатой кромки элемента в промежуточных точках от смещений из плоскости изгиба — расстояние между этими точками;

b,h — ширина и максимальная высота сечения элемента на участке $l_{\mathrm{p}};$

 k_{Φ} — коэффициент, зависящий от формы эпюры изгибающего момента на участке $l_{\rm p}$, определяемый по табл. 1.

Таблица 1 Значения коэффициентов k_{ϕ} и $k_{\rm жM}$ для расчётов на устойчивость плоской формы деформирования

	k_{Φ}			
Форма эпюры моментов	При закреплении только по концам участка $l_{ m p}$	При закреплении по концам и растянутой от момента M кромке		
	1	1		
dM \downarrow l_p	$ \begin{array}{c} 1,750,75d \\ 0 < d \le 1 \end{array} $	$\frac{3}{2+d}; 0 \le d \le 1$		
dM l_p M	$ 2(0,5+d)^2 \\ -1 \le d \le 0 $	$\frac{3}{2+d}; -2 < d \le 0$		
$l_p/2$ c	$1,35 + 1,45 (c/l_p)^2$	$1,35 + 0,3 (c/l_p)$		

	k_{Φ}				
Форма эпюры моментов	При закреплении только по концам участка $l_{\rm p}$	При закреплении по концам и растянутой от момента M кромке			
/ _p	1,13	1,13			
$l_{\rm p}$	2,45 2,32				
		$k_{\mathrm{*M}}$			
Форма эпюры моментов	β_h l_p	β_h $l_p/2$ $l_p/2$ β_h			
	$\beta^{1/2}$	$\beta^{1/2}$			
dM l_p	$\beta^{\frac{1}{3-d}}$	$\beta^{1/2}$			
dM l_p M	$\beta^{\frac{1}{3-d}}$	$\beta^{1/2}$			
$l_p/2$ c	$\beta^{\frac{1}{2+2c/l_p}}$	$\beta^{\frac{1}{3-2c/l_p}}$			
$l_{\rm p}$	$\beta^{1/2}$	$\beta^{2/5}$			
$l_{\rm p}$	$\beta^{1/4}$	$\beta^{1/2}$			

При расчёте изгибаемых элементов с линейно меняющейся по длине высотой и постоянной шириной поперечного сечения, не имеющих закреплений из плоскости изгиба растянутой кромки или при m < 4, коэффициент $\phi_{\rm M}$ дополнительно умножается на коэффициент $k_{\rm MM}$. Значения коэффициента $k_{\rm MM}$ приведены в табл. 1. При числе промежуточных подкреплённых точек растянутой кромки $m \ge 4 \ k_{\rm MM} = 1$.

При подкреплении растянутой кромки элемента из плоскости изгиба в промежуточных точках на участке $l_{\rm p}$ коэффициент $\phi_{\rm m}$, определённый по формуле (5), следует умножать на коэффициент $k_{\rm nM}$, который находят по формуле

$$k_{\text{mM}} = 1 + \left[0.142 \frac{l_{\text{p}}}{h} + 1.76 \frac{h}{l_{\text{p}}} + 1.4\alpha_{\text{p}} - 1 \right] \frac{m^2}{m^2 + 1},$$
 (6)

где $\alpha_{\rm p}$ — центральный угол в радианах, определяющий участок $l_{\rm p}$ элемента кругового очертания (для прямоугольных элементов $\alpha_{\rm p}=0$);

m — число промежуточных подкреплённых (с одинаковым шагом) точек растянутой кромки на участке $l_{\rm p}$. При $m \ge 4$ величину $m^2/(m^2+1)$ следует принимать равной 1.

Проверку устойчивости плоской формы деформирования изгибаемых элементов двутаврового и коробчатого поперечного сечения следует производить в тех случаях, когда $l_{\rm p} \ge 7b$, где b — ширина поперечного сечения сжатого пояса.

Расчёт следует производить по формуле

$$\frac{M}{W_{\rm 6p}} \le \varphi R_{\rm c},\tag{7}$$

где ф — коэффициент продольного изгиба из плоскости сжатого пояса элемента;

 $R_{\rm c}$ — расчётное сопротивление сжатию.

Расчёт на жёсткость изгибаемых элементов заключается в определении прогиба или наибольшего относительного прогиба f/l от нормативных нагрузок и проверке условия, чтобы он не превосходил предельно допускаемого нормами значения:

$$f \le [f], f/l \le [f/l]. \tag{8}$$

Формулы для определения максимального прогиба для схем балок и нагрузок, приведённых на рис. 2, даны в табл. 2.

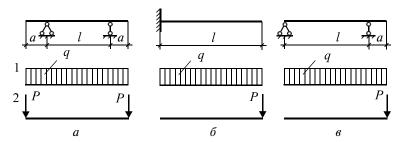


Рис. 2. Схемы балок и нагрузок

Таблица 2 Формулы для определения максимального прогиба

Схема балки по рис. 2	В середине пролёта	На конце консоли
1 <i>a</i>	$f_{\rm np} = \frac{ql^2}{48EI} \left(\frac{5}{8} l^2 - 3a^2 \right)$	$f_0 = \frac{qa}{24EI} \left(l^3 - 6a^2l - 3a^3 \right)$
$f_{\rm np} = -\frac{Pal^2}{8EI}$		$f_0 = \frac{Pa^2}{6EI} (2a+3l)$
1δ	-	$f_0 = \frac{ql^4}{8EI}$
26	_	$f_0 = \frac{Pl^3}{3EI}$
16	_	$f_0 = \frac{qa}{24EI} \left[3a^3 - l\left(l^2 - 4a^2\right) \right]$
28	$f_{\rm np} = -0.0642 \frac{Pal^2}{EI}$	$f_0 = \frac{Pa^2}{3EI}(l+a)$

Прогиб для однопролётной шарнирно опёртой балки определяется по формуле

$$f_0 = \frac{1}{48} \frac{P l^3}{EI}$$
 или $f_0 = \frac{5}{384} \frac{q^{\mathrm{H}} l^4}{EI}$, (9)

где f_0 — прогиб балки постоянного сечения без учёта деформаций сдвига; l — расчётный пролёт элемента.

Значения коэффициентов *k* и *c* для вычисления прогибов балок с учётом переменности сечения и деформации сдвига

Поперечное сечение балки	Расчётная схема	k	С
Прямоугольное	M h M	β	0
То же	β_h l	$0,23 + 0,77\beta$	16,4 + 7,6β
»	β_n l l	$0.5d + (1 - 0.5d)\beta$	$[45 - 24d(1-\beta) + 3\beta] \times \frac{1}{3-4d^2}$
»	β_h h q	$0,15+0,85\beta$	15,4 +3,8β
Двутавровое	β_h h q	$0,4+0,6\beta$	$(45,3-6,9\beta)\gamma$
Прямоугольное	$\beta_n + \frac{dl}{l}P$	$0.23 + 0.77\beta + 0.6d \times (1 - \beta)$	$[8,2+2,4(1-\beta)d+3,8\beta] \times \frac{1}{(2+d)(1-d)}$
То же	β_h	$0,35 + 0,65\beta$	$5,4+2,6\beta$

 Π римечания. k, c — коэффициенты, учитывающие переменность высоты сечения элемента и влияние деформации сдвига и прогиб; γ — отношение площади поясов к площади стенки двугавровой балки (высота стенки принимается между центрами тяжести поясов).

 Таблица 4

 Предельные деформации (прогибы) элементов зданий

Элементы конструкций	Предельные прогибы в долях пролёта, не более $[f/I]^*$
Балки междуэтажных перекрытий	1/250
Балки чердачных перекрытий	1/200
Покрытия (кроме ендов):	
прогоны, стропильные ноги	1/200
балки консольные	1/150
фермы, клеёные балки (кроме консольных)	1/300
плиты	1/250
обрешётки, настилы	1/150
Несущие элементы ендов	1/400
Панели и элементы фахверка	1/250

^{*[}f/I] — предельные относительные прогибы изгибаемых деревянных элементов.

Схема экспериментальной установки для испытания древесины на поперечный изгиб представлена на рис. 3. Спецификация к схеме приведена в табл. 5.

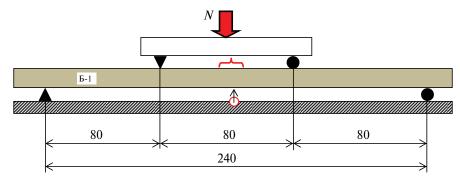


Рис. 3. Схема экспериментальной установки для испытания древесины на поперечный изгиб

Таблица 5 Спецификация к схеме экспериментальной установки для испытания древесины на поперечный изгиб

№ п/п	Конструкция	Наименование материала	Длина, см	№ проката	Масса, кг
1	Траверса	Двутавр или щвеллер	25	10	2,15
2	Опытный образец				
3	Опорный швеллер	Швеллер	70	14	8,61
4	Тензометр	Тензометр рычажного типа	_	_	_
		с базой 50 мм			
5	Индикатор	Индикатор часового типа	_	_	_
		с ценой деления 0,01 мм			
6	Шарнирно подвижная	Каток. Труба Ø 32 мм,	4	_	0,25
	опора (каток)	заполненная бетоном			
7	Шарнирно неподвижная	Уголок с приваренной	4	_	0,25
	опора (уголок)	опорной пластиной			
8	Опорная пластина	Пластина 40×40×6 мм	_	_	0,5

Порядок выполнения работы

- 1. Измерить штангенциркулем в середине длины каждого образца ширину b в радиальном направлении и высоту h в тангенциальном. Записать в журнал результаты измерений. Образец уложить на неподвижные закруглённые опоры.
- 2. На образце определить предел прочности при статическом изгибе. Образец испытать на поперечный изгиб до разрушения. Перед испытанием образец поместить в приспособление по схеме на рис. 4 и нагружать одним или двумя сосредоточенными грузами. Радиус закругления неподвижных опор и ножей приспособления должен быть равным 15 мм. Образец на опоры поместить так, чтобы изгибающие усилия были направлены по касательной к годичным слоям, т.е. необходимо обеспечить тангенциальный изгиб. При испытании древесины мягких пород на опоры и под ножи поместить фанерные прокладки размером $20 \times 20 \times 5$ мм.
 - 3. Образец испытать до разрушения.
- 4. Установить приспособление вместе с образцом между плитами пресса. Отцентрировать. Образец начать нагружать. Скорость нагружения должна быть равномерной в течение всего времени испытаний и составлять:
 - а) при испытании по схеме рис. 4, $a 7 \pm 1.5$ кH/мин;
 - б) при испытании по схеме рис. 4, $\delta 5\pm 1$ кH/мин.

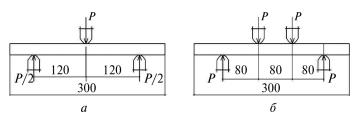


Рис. 4. Схемы испытания древесины на поперечный изгиб: a — при нагружении посредине меду опорами в одной точке; δ — при нагружении в двух точках на одной трети расстояния от опор

5. Выключить пресс. Извлечь приспособление с образцом. Вычислить предел прочности древесины при статическом изгибе с погрешностью не более 1 МПа. Результаты испытаний древесины на поперечный изгиб занести в журнал лабораторных работ (табл. 6).

Таблица 6 Определение прочности древесины при изгибе

№	Размеры образца, мм		Максимальная	Предел прочности	Характер разрушения	
п/п	b	h	l	нагрузка P_{\max} , кН	образца $R_{_{\rm H}}$, МПа	образца
1	2	3	4	5	6	7

По результатам испытаний древесины методами статистической обработки данных определить её фактические характеристики прочности. Результаты обработки данных необхолимо свести в табл. 7.

Таблица 7 Форма журнала статистической обработки результатов испытаний древесины

Значения	X	ΔX	S	V	S_{x}	P
1	2	3	4	5	6	7

Примечание. В строке «Значения» — результаты испытаний исследуемой характеристики древесины.

Рассмотрим статистические характеристики, входящие в табл. 7:

X — среднее арифметическое значение:

$$X = \sum$$
 значений / n ,

где n — число ранее полученных значений исследуемой характеристики древесины;

 ΔX — отклонение конкретного значения от среднего арифметического со своим знаком:

S — среднее квадратическое отклонение:

$$S = \pm \sqrt{\sum \Delta X^2 / (n-1)};$$

V — вариационный коэффициент:

$$V = \pm 100 S / X$$
;

 S_{x} — средняя ошибка среднего арифметического:

$$S_x = \pm S / \sqrt{n};$$

P — показатель точности:

$$P = \pm 100 S_{r} / X \%$$
.

Удовлетворительной считается точность $P \le \pm 5$ %, при этом фактическая характеристика равна среднему арифметическому. Если P > 5 %, то следует постепенным удалением значений с максимальным отклонением ΔX понизить P до требуемого значения, учитывая, что n должно быть не меньше трёх.

По результатам лабораторной работы сделать вывод о прочностных свойствах древесины и произвести оценку методов их определения.

Затем определить коэффициент запаса прочности по формуле

$$K = P / R_{\text{pacy}}$$

где P — сопротивление древесины изгибу;

 $R_{\text{расч}}$ — соответствующее расчётное сопротивление, определяемое по СП 64.13330.2011.

ФОРМЫ КОНТРОЛЯ

Оценивание формирования компетенций студентов при проведении лабораторной работы осуществляется посредством прохождения ими формы защиты отчёта по лабораторной работе «Основные физико-механические свойства древесины».

Примерные вопросы к защите отчёта по лабораторной работе

- 1. Элементы деревянных конструкций, работающие на растяжение.
- 2. Форма стандартного лабораторного образца для испытаний древесины на растяжение.
 - 3. Диаграмма деформаций древесины при растяжении вдоль волокон.
 - 4. Максимальный предел прочности древесины при растяжении вдоль волокон.
 - 5. Проверка прочности центрально растянутых конструктивных элементов.
 - 6. Элементы деревянных конструкций, работающие на поперечный изгиб.
 - 7. Изгибающие моменты и поперечная сила.
 - 8. Сжатие и растяжение участков деревянных элементов при поперечном изгибе.
- 9. Форма стандартного лабораторного образца для испытаний древесины на поперечный изгиб.
- 10. Проверка прочности деревянных элементов по нормальным напряжениям при поперечном изгибе.
- 11. Проверка прочности деревянных элементов по касательным напряжениям при поперечном изгибе.

УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Основная литература

Бойтемиров Φ .А. Конструкции из дерева и пластмасс : учебник. — Москва : Академия, 2013. - 286 с.

Дополнительная литература

Гиясов Б.И. Конструкции из древесины и пластмасс: учебник / Б.И. Гиясов, В.И. Запруднов, В.В. Стриженко и др. — Москва: Изд-во ACB, 2017. — 582 с.

Гиясов Б.И. Конструкции из древесины и пластмасс: учебное пособие / Б.И. Гиясов, Н.Г. Серёгин, Д.Н. Серёгин. — Москва: Изд-во АСВ, 2018. - 400 с.

СП 64.13330.2011 Деревянные конструкции. Актуализированная редакция СНиП II-25—80. — Москва : ОАО ЦПП, 2011. — 87 с.