Risk Proneness Estimation Method Developed in Relation to the Decision Taker that Controls the Robotic System

Valery Vilisov

(Submitted on 17 Mar 2017)

This work suggests the estimation method developed in relation to the position of the robotic system (RS) operator, showing his degree of risk proneness. The base models are: Hurwitz pessimism/optimism criterion and decision trees. The problem is solved using the reverse setting: we estimate pessimism/optimism parameter of the operator (decision taker) by observing what decisions he makes when controlling the RS. The solution context of such decision taker position estimation problems can be: using RS in emergency situations, in military actions and other situations connected with the uncertainty of the situation.

Subjects: Robotics (cs.RO), Human-Computer Interaction (cs.HC)
Cite as: arXiv:1703.06161 [cs.RO]
(or arXiv:1703.06161v1 [cs.RO] for this version)

Bibliographic data
[Enable Bibex (What is Bibex?)]

Submission history
From: Valery Vilisov [view email]
[v1] Fri, 17 Mar 2017 18:39:23 UTC (249 KB)

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)