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Abstract—An approach for determining the correlation 
functions of the noise modulation function under the influence 
of modulating (or more often multiplicative) noise is described. 
Both stationary and slow noise is considered as influencing 
multiplicative noise. Correlation functions of noise modulation 
and fluctuations of the latter can be found by the four-
dimensional characteristic function of phase and amplitude 
distortions. We have derived expressions for the above-
mentioned correlation functions affected by static 
multiplicative noise for the normal law of variation of 
amplitude and phase distortions in the case of their 
uncorrelation and cross-correlation. The correlation functions 
of noise modulation and noise modulation function fluctuations 
under the influence of slow modulating noise were determined 
for the case when the phase and distortion amplitude 
variations are independent. The expressions of the correlation 
functions of noise modulation and its fluctuations for 
correlated and normal distribution of phase and amplitude 
distortions under the influence of slow modulating noise are 
obtained. 

Keywords—modulating (multiplicative) noise, noise 
modulation function, noise modulation function fluctuations, 
correlation function, amplitude distortion, phase distortion, 
characteristic function, slow multiplicative noise 

I. INTRODUCTION 
As is known, multiplicative (modulating) noise (MN) 

strongly influences on the reception of useful signals, as well 
as the performance characteristics of radio systems and 
devices [1-5, etc.]. The characteristics of the quality of 
operation of a particular radio system are determined by its 
purpose and are often specific to a particular type of system. 
In most cases, these characteristics are determined by some 
primary characteristics that describe the quality of signal 
reception in the presence of noise, such as the accuracy of 
determining signal information parameters, the resolution of 
a certain parameter, the probability of correct detection or 
extraction of the signal [6-11, etc.]. 

Note that the noise modulation function (NMF) can fully 
characterize MN. Correlation function (CF) and energy 
spectrum are the main characteristics of NMF. 

The purpose of the work is to determine the CF of both 
the NMF and the fluctuations of the named function under 
the influence of stationary and slow MN during the mutual 
connection of changes in amplitude and phase of distortion, 

as well as when the latter represent a narrow-band random 
process. 

In [12], the issue related to studying the spectra of a 
harmonic oscillation modulated in amplitude and phase by 
deterministic and quasi-deterministic functions and by 
stationary broadband fluctuation processes are analyzed in 
detail. Cases when phase and amplitude changes are 
interrelated, when they represent a narrow-band random 
process, as well as cases when phase changes are a non-
stationary pulse-fluctuation process were considered much 
less often. Let us consider and analyze the CF and energy 
spectra of the NMF when the signal is influenced by MN. 
We will confine ourselves to considering the so-called slow 
MN, when the correlation time or the period of the NMF is 
longer than the duration of the coherently processed signal or 
a signal burst or of the same order with it. 

As a rule, narrow-band signals whose spectrum width is 
much less than the carrier frequency are used in radio 
systems. Such signals, formed by modulation of a harmonic 
oscillation in amplitude and in phase (or frequency), write 
down as follows 

       0cos Ф ,cu t U t t t       

this expression includes: the envelope of the signal U(t), 
which is determined by the law of amplitude modulation of 
the signal, с is the frequency of the carrier signal, and 0 is 
its initial phase. In turn, Ф(t) is used, which determines the 
law of phase modulation of the signal. If the frequency 
modulation law (t) is used, the expression 
   Ф ,t t dt   is applicable. 
As is known, as a result of MN, amplitude and phase 

distortions of the signal appear. Let's write the expression for 
such a signal under the influence of MN 

          0cos Ф .M cu t t U t t t t         

Here are presented (t) phase distortions (changes in the 
phase of a useful signal) under the influence of MN, a 
dimensionless factor   0t  characterizes amplitude 
distortions of the signal, that is, changes in its envelope 
under the influence of MN. 

Let's set the condition that the mentioned distortions 
have the character of parasitic modulation. In other words, 



 

the width of the function spectrum (t) and (t) is 
significantly less than the frequency с. 

The expression       .MU t t U t  defines the envelope 
of the signal  .Мu t  

Expression (1) can be represented as [13]: 

       0Re exp .M M cu t U t j t    
  

The latter expression includes a complex envelope 
            expMU t U t t i t U t M t        of a signal uМ(t)  

under the influence of MN, and a complex envelope of an 
undistorted signal is also used. Parasitic signal modulation, 
as noted above, will be fully described by NMF 

      expM t t i t   . 
The complex value in the given expression and further is 

indicated by a dot above one or another symbol. 
Thus, as a result of the influence of MN, the complex 

envelope of the useful signal, which contains the transferred 
information, changes, and it leads to distortion of this 
information. 

Let us consider and analyze CF of the NMF. 

II. CORRELATION FUNCTIONS OF NOISE MODULATION 
FUNCTION WITH STATIONARY FLUCTUATION MULTIPLICATIVE 

NOISE 
If the changes in phase and amplitude of the signal 

caused by MN are stationary processes, while in the case of 
the interdependence of the phase and amplitude, they are 
stationary related, then the NMF  M t  is stationary.  

In this case, the NMF can be written as [14] 

    0 ,M t M V t     

Here: the time-independent mathematical expectation of the 
FPM is given by   1 ,M m M t  and the existing 

fluctuations of the FPM are described by  0 .V t  
Averaging over a set in the given expression and further 

is indicated by a line above one or another symbol. 
The CF of NMF  MB   and the CF of fluctuations of the 

NMF  VB   can be determined by the characteristic 
function of phase and amplitude distortions, where  is the 
time of the variable delay of the envelope  .MU t  

To determine changes in phase and amplitude at 
moments in time t1 = t and 2 ,t t   we use a four-
dimensional characteristic function (FDCF) [13]: 

      4 1 2 3 4 1 1 1 2 2 3 1 4 2, , , exp ,x x x x m j x x x x         

where 1 and 1 are the values (t) and (t) at t1 = t, 2 and 
2 at 2 .t t    

If the function 4
 is used, the CF  МB   can be written 

as 



      
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 

 

The complex conjugate value in the given expression and 

further is indicated by a line above one or another symbol. 
Taking into account (2), the CF of fluctuations is equal to 

         
2

*
1 0 0 .tV МB m V V t B M           

The mathematical expectation M of the NMF can be 
expressed in terms of a two-dimensional characteristic 
function of change in phase and amplitude at coinciding time 
points  2 1 2, .x x  Thus, 

      2 1 2 1 1 2, exp ,x x m j x x     

consequently, 

     
1

1 2 1
1 0

.exp ,1
x

M m j j x
x





 
       

  

Taking (3)-(5) into account, the CF of fluctuations of the 
NMF is determined by the ratio 


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

 

In many cases, a dimensionless multiplier (t) that 
determines amplitude distortions can be represented as 

    0 1 .t t        

The expression (6) uses the mathematical expectation 0 of a 
dimensionless factor (t), as well as a stationary random 
process with a zero mean (t), for which the following 
condition must be met:  1 0.t      Thus, the CF of the 
NMF is determined as follows 


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    


        










where 
     4 1 2 3 4 1 1 1 2 2 3 1 4 2, , , expx x x x m j x x x x          is 

a FDCF (t) and (t) 
 
at time points t1 = t и 2t t   . 

Let's use the expression to define a mathematical 
expectation of the NMF 

  
1

0 2 0 2 1
1 0

1 ,,
x

M j x
x

 



 
       

  

where      2 1 2 1 1 2, expx x m j x x      is a  two-

dimensional characteristic function (t) and (t) at 
coinciding moments of time. 

Substituting (7) and (8) in (4), we obtain an expression 
for determining the CF of fluctuations in NMF: 
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 
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         





These formulas make it easy to determine  МB   and 

  ,VB   if characteristic functions following the distribution 
law of amplitude and phase distortions are known. For 
example, if the distribution of phase (t) and amplitude (t) 
distortions is close to normal, which is quite a common case, 
then the characteristic functions  4 1 2 3 4, , ,x x x x  and 

 2 1 2,x x  can be represented as: 


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 

where 2
  and 2

  are, respectively, the variances (t) and 

(t),  r   and  r   are their correlation coefficients, 

 r   is a cross-correlation coefficient (t) and (t). 
Substituting (10) and (11) into (7) and (9), we get 


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      

           



 


        
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            

              



 

If the amplitude and phase distortions are not correlated, 
then (12) and (13) are simplified: 


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With pure phase distortion 


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Let's turn to the next important case of the so-called slow 
MN. For these noises, the condition is met ,c T   that is, 
the correlation time of the MN τс will be much longer than 
the signal with duration T on which these noise affects. 
Another feature of slow MNs under the above conditions is a 
rather slow change in the phase and amplitude of the 
processed signal under the influence of these noises. 

III. CORRELATION FUNCTIONS OF NMF 
WITH SLOW MULTIPLICATIVE NOISE 

We assume that random processes (t), (t) and (t) are 
root-mean-square differentiable. Then the CF  МB   and 

 VB  can be expanded into a McLaren series [15]. 
From physical considerations, it follows that when 

considering the influence MN on the signal with duration T, 
we will focus on the values of CF  МB   and  VB   at 

.T   If the correlation time τс of these functions is much 
longer than the signal duration T, then for cT     we 
can only take the first three terms of the series: 
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We will determine the values  0 ,МB   0 ,МB   0 ,МB  

 0 ,VB   0VB  and  0VB  for the case when the phase 
(t) and amplitude (t) changes are independent. 

By definition, the functions  МB   and  VB   can be 
written as 
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where   2 2
1 ,m t    2

  is the variance (t). 
Since the operations of differentiation and statistical 

averaging are interchangeable [15], then for the first 
derivative of the functions  МB   and  VB   we get 
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Note, that the expression (16) takes into account, that 
    1 0,m t t    when (t) is a stationary function. 

If (t) and (t) are independent, then 
    2

1 0,m t t    because for a random process 

  1 0,m t   consequently, 

    М 0 0 0.VB B     

Differentiating (15) by , we get 
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Since (t) and (t) are independent, then 
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where 2
  is phase change derivative variance   .d t dt  

It is apparent, that 2
  represents the variance of change 

in the instantaneous frequency of the signal being processed 
under the influence of phase distortion. 

The first term of the right part (18) can be represented as 

      2
1m t t      

where 2
  is the variance   ,t  then 
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Or, taking into account (6), 

      2 2 2 2
00 0 1 ,М VB B   
          

   

where 2
  is the variance  .t  

Taking into account the obtained values of the 
derivatives, the CF  VB   and  МB  with independent 
amplitude and phase distortions for values c   can be 
represented as 
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or, when    0 1 ,t t        
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Thus, when ,c    the function  VB   can be simply 
expressed in terms of the variance of the function (t) that 
determines the amplitude distortions, the variance of the 
derivative of the function (t) and the variance of the 
derivative of the phase deviation 2 .  

With just phase distortions, expressions (20) and (21) are 
simplified as: 
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If the distribution of phase and amplitude distortions is 
normal, (17), (19) can be obtained directly by differentiating 
(14) for  .VB   

For the case when phase and amplitude distortions are 
normally distributed and correlated, the following 
coefficients of the expansion of  МB   and  VB   in the 
Taylor series can be obtained from (12) and (13): 
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in the expressions presented, the coefficient  0r of cross 
correlation of the function (t), which is determined at some 
value  t  (derivative of signal phase changes). 

Approximate expressions for CF  МB   and  VB   
when c    will be: 
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Approximate expressions for  МB  and  VB  when 

c   and when phase and amplitude distortions are 
normally distributed can also be obtained from (12) and (13) 
by expanding the CF of phase and amplitude distortions and 
their cross CF into a Taylor series.  

Taking into account the fact that    0 0 0,B B     
these expansions have the form: 
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Substituting these values in (12) and (13) and limiting 
ourselves to terms containing  to the power not higher than 
the second, we obtain 
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It is apparent that if we replace the multiplier 2 20.5   
   by its expansion into a series and limit ourselves to terms 

containing τ to the power not higher than the second, then 
(24) and (25) turn into (22) and (23). 

IV. CONCLUSIONS 
The effect of MN when finding CF of the NMF is 

considered. Additionally, the definition of the CF of the 
named function allows to characterize the MN affecting the 
signal. In this article we consider the effect of only stationary 
and slow MN on the signal. In this case, variations in phase 
and distortion amplitude may be independent or related to the 
normal (or close to normal) distribution and are a narrow-
band random process. It is shown that in order to find the 
CFs of NMF and fluctuations of the NMF, characteristic 
functions of amplitude and phase distortion can be applied, 
namely a four-dimensional characteristic function. At the 
same time, it is shown that the use of a two-dimensional 
characteristic function is sufficient to determine the 
mathematical expectation of the NMF. It is shown that the 
use of characteristic functions that correspond to the 
distribution law of phase and amplitude distortions makes it 
possible to determine the desired CF. The corresponding 
expressions are obtained for the cases when the phase and 
amplitude distortions can be both uncorrelated and mutually 
correlated. The expressions for CFs of the NMF and 
fluctuations of the NMF under the influence of slow MN in 
the case of independent variations in phase and distortion 
amplitude are obtained. It is shown that the CF can be 
expressed through the variance of the function determining 
the amplitude distortion, the variance of its derivative and the 
variance of the derivative of phase deviation. We obtained 
the expressions of CFs of the NMF and its fluctuations under 

the influence of slow MN for normal distribution law of 
phase and amplitude distortions and their correlation. 

Determination of CF of NMF both in case of mutual 
connection of phase and amplitude distortion change and in 
case when the latter represent narrow-band random process 
are a new scientific result. Practical significance of the study: 
mathematical expressions have been obtained that allow 
determining the CFs of the NMF and fluctuations of the 
NMF for sufficiently important practical applications. 
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