Федеральное государственное бюджетное образовательное учреждение высшего образования «ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ ДВАЖДЫ ГЕРОЯ СОВЕТСКОГО СОЮЗА, ЛЕТЧИКА-КОСМОНАВТА А.А. ЛЕОНОВА»

		УТВЕРЖДАЮ
		И.о. проректора
		А.В. Троицкий
«	>>	2023 г.

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ

КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) «ТЕХНОЛОГИЯ СБОРКИ И ОСНАСТКА МАШИНОСТРОИТЕЛЬНЫХ ПРОИЗВОДСТВ»

Направление подготовки: 15.03.06 «Мехатроника и робототехника»

Направленность (профиль): Автоматизация производственных процессов

Уровень высшего образования: бакалавриат

Форма обучения: очная

Рабочая программа является составной частью основной профессиональной образовательной программы и проходит рецензирование работодателей составе основной профессиональной В образовательной программы. Рабочая программа актуализируется корректируется ежегодно.

Автор: к.т.н. Музалевская А.А. Рабочая программа дисциплины (модуля): «Технология сборки и оснастка машиностроительных производств» – Королев МО: «Технологический университет», 2023.

Рецензент: д.т.н., с.н.с. Мороз А.П.

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки бакалавров 15.03.06 «Мехатроника и робототехника» и Учебного плана, утвержденного Ученым советом Университета.

Протокол №9 от 11.04.2023 г.

Рабочая программа рассмотрена и одобрена на заседании кафедры:

Заведующий кафедрой (ФИО,	Мороз А.П. д.т.н., с.н.с.			
ученая степень,	7			
звание, подпись)	//			
Год утверждения	2022	2024	2025	2026
(переутверждения)	2023	2024	2025	2026
Номер и дата				
протокола	№9 от 28.03.23			
заседания кафедры				

Рабочая программа согласована:		
Руководитель ОПОП ВО	f	_ _ к.т.н., доцент Т.Н.Архипова

Рабочая программа рекомендована на заседании УМС:

Год утверждения (переутверждения)	2023	2024	2025	2026
Номер и дата	№5 от			
протокола	11.04.2023 г.			
заседания УМС				

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Целями преподавания дисциплины является формирование знаний и умений в предметных областях:

- анализ существующих и проектирование новых технологических процессов сборки машин;
- проведение исследований по совершенствованию технологий сборки с целью повышения качества изделий, производительности труда и снижения себестоимости;
- формирование представлений о современных средствах технологического оснащения производства, составе и видах технологической оснастки.

Дисциплина направлена на формирование следующих компетенций:

Профессиональные компетенции:

- ПК-1 Способен анализировать технологические операции механосборочного производства с целью выявления переходов, подлежащих автоматизации и механизации;
- ПК-3. Способен проводить проектные и опытно-конструкторские работы по изготовлению средств автоматизации и механизации технологических, подъемно-транспортных, погрузочно-разгрузочных операций механосборочного производства.

Основными задачами дисциплины являются:

- изучение производственных и технологических процессов сборки общего машиностроения;
- изучение основных закономерностей и методов сборки сборочных единиц и машин;
- изучение процессов сборки с учетом технологических, конструкторских, экономических параметров;
- умение разрабатывать средства технологического оснащения процесса сборки;
- умение разрабатывать проектную и рабочую техническую документацию сборки;
- изучение методов контроля в соответствии с технической документацией, техническими условиями;
- умение проводить технико-экономическое обоснование принятого варианта сборки.
- изучение теоретических основ и фундаментальных знаний в области классификации средств технологического оснащения производства, составе и структуре технологического оснащения производства;
- умение применять полученные знания для решения прикладных задач;
- развитие общего представления о методах проектирования приспособлений.

Показатель освоения компетенции отражают следующие индикаторы: **Трудовые действия:**

- Способен анализировать оборудование, средства технологического оснащения, средства измерения, приемы и методы работы, применяемые при выполнении технологических процессов, обрабатывать и анализировать затраты времени технологических процессов;
- Способен формулировать предложения по сокращению затрат ручного труда, внедрению рациональных приемов и методов труда при выполнении подъемнотранспортных, погрузочно-разгрузочных операций механосборочного производства;
- Способен осуществлять сбор исходных данных для проведения проектных и опытно-конструкторские работ по изготовлению средств автоматизации и механизации технологических, подъемно-транспортных, погрузочно-разгрузочных операций механосборочного производства.
- Способен определять состав и количество средств автоматизации и механизации технологических процессов на основе исходных данных.

Необходимые умения:

- Умеет выявлять наиболее трудоемкие приемы и выполнять структурную детализацию затрат времени при выполнении операций.
- Умеет рассчитывать эффективность выполнения технологических и вспомогательных операций, определять узкие месса в технологических процессах.
- Умеет устанавливать исходные данные для проведения проектных и опытно-конструкторские работ по изготовлению средств автоматизации и механизации технологических, подъемно-транспортных, погрузочно-разгрузочных операций механосборочного производства.

Необходимые знания:

- Знает основы психофизиологии, гигиены и эргономики труда, методы исследования и измерения трудовых затрат.
- Знает технологические возможности и принципы выбора средств автоматизации и механизации технологических, подъемно-транспортных, погрузочно-разгрузочных операций механосборочного производства.
- Знает средства технологического оснащения, контрольно-измерительные приборы и инструменты, применяемые в машиностроении.
- Знает технические требования, предъявляемые к машиностроительным изделиям; основные свойства конструкционных материалов машиностроительных изделий, характеристики основных видов исходных заготовок и способы их получения.
- Знает типы и конструктивные особенности средств автоматизации и механизации технологических, подъемно-транспортных, погрузочно-разгрузочных операций механосборочного производства.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина относится к дисциплинам части, формируемой участниками образовательных отношений, основной профессиональной образовательной программы по направлению подготовки 15.03.06 «Мехатроника и робототехника».

Изучение данной дисциплины базируется на ранее изученной дисциплине «Технология машиностроения» и компетенциях: ОПК-5,9,13; ПК-6.

Знания и компетенции, полученные при освоении дисциплины «Технология сборки и оснастка машиностроительных производств» являются базовыми для прохождения практики, выполнения выпускной квалификационной работы бакалавра.

3. Объем дисциплины и виды учебной работы

При очной форме обучения преподавание дисциплины ведется на 4 курсе в 7 семестре.

Таблица1

Виды занятий	Всего часов	Семестр	Семестр 7	Семестр	Семестр
Общая трудоемкость	180		180		
0	ЧНАЯ ФОРМ.	А ОБУЧЕНИ	Я		
Аудиторные занятия	64		64		
Лекции (Л)	32		32		
Практические занятия (ПЗ)	32		32		
Лабораторные работы (ЛР)	-		-		
Практическая подготовка	4		4		
Самостоятельная работа	116		116		
Курсовые работы	-		-		
Контрольная работа	+		+		
Текущий контроль знаний, тест	тест		тест		
Вид итогового контроля, экзамен	Зачет с оценкой		Зачет с оценкой		

4. Содержание дисциплины 4.1. Темы дисциплины и виды занятий

Таблица 2

Наименование тем	Лекции, час Очная /заочная форма	Практическ ие занятия, час Очная /заочная форма	Занятия в интерактивн ой форме, час Очная /заочная форма	Практиче ская подготов ка, час Очная /заочная форма	Код компетенц ий
Тема 1. Введение. Значение сборки при изготовлении машин	1/-	1/-	-		ПК-1
Тема 2. Основные виды сборочных соединений	1/-	1/-			ПК-1
Тема 3. Исходные для проектирования технологических	2/-	2/-	1/-	0,5/-	ПК-1, ПК-3

процессов сборки					
Тема 4. Этапы и					ПГ 1
последовательность					ПК-1
проектирования	2/-	2/-	1/-	0.5/	
технологического	2,	_ /	1,	0,5/-	
процесса сборки					
Тема 5.					ПК-1
Организационные	2/-	2/-	1/-		1110 1
формы сборки					
Тема 6. Выбор метода					ПК-1,
достижения точности	2/-	2/-	1/-		ПК-3
сборки					
Тема 7.				0,5/-	ПК-1
Последовательность и	2/-	2/-	1/-		
содержание сборочных	2/-	2/-	1/-		
операций. Схемы сборки					
Тема 8. Технология	2/-	2/-	1/-	0,5/-	ПК-1
балансировки	21-	2/-	1/-		
Тема 9. Выбор					ПК-1
сборочного				0,5/-	
оборудования, оснастки	2/-	2/-	1/-	0,5/-	
и подъемно-					
транспортных средств					
Тема 10. Общие					ПК-1
сведения о					
технологической	2/-	2/-			
оснастке	21	21			
механосборочного					
производства.					
Тема 11. Методика					ПК-1,
проектирования	2/-	2/-	1/-	0,5/-	ПК-3
станочных	2/-	2/-	1/-		
приспособлений					
Тема 12.				0,5/-	ПК-1
Проектирование	2/	2/	1 /		
элементов	2/-	2/-	1/-		
приспособления					
Тема 13. Закрепление					ПК-1,
заготовок в					ПК-3
приспособлении,	2/	2/			
зажимные устройства и	2/-	2/-			
силовые приводы					
приспособлений					
Тема 14. Корпус и					ПК-1
вспомогательные	2/	2 /			
элементы	2/-	2/-			
приспособлений					
Тема 15. Сборочные	- /				ПК-1
приспособления	2/-	2/-			
Тема 16. Станочные	1/	1/	1 /		ПК-1,
тема то. Станочные	4/-	4/-	1/-		1111 1,

приспособления для					ПК-3
переменнопоточного					
производства и				0,5/-	
групповой обработки;				0,5/-	
для автоматических					
линий; для станков с					
ЧПУ и ГПС.					
Итого:	32/-	32/-	10/-	4/-	

4.2. Содержание тем дисциплины

Тема 1. Введение. Значение сборки при изготовлении машин

Сборка - заключительный этап изготовления машин. Технология изготовления деталей, Технология сборки и оснастка машиностроительных производств машины. Трудоемкость сборочных работ.

Тема 2. Основные виды сборочных соединений

Виды соединений: неподвижные разъемные; неподвижные неразъемные; подвижные разъемные подвижные неразъемные.

Неподвижные разъемные соединения: резьбовые, шпоночные, некоторые шлицевые, конические, штифтовые, профильные, соединения с переходными посадками.

Неподвижные неразъемные соединения: соединения, которые получают посадкой с гарантированным натягом, развальцовкой, отбортовкой, сваркой, пайкой, клепкой, склеиванием.

Тема 3. Исходные данные для проектирования технологичес ПК-1ких процессов сборки

Технологический процесс сборки - часть производственного процесса, содержащая действия по установке и образованию соединений составных частей изделия.

Исходные данные для технологического процесса сборки: описание изделия и его служебное назначение; сборочные чертежи изделия, чертежи сборочных единиц, спецификации деталей, входящих в изделие; рабочие чертежи деталей, входящих в изделие; объем выпуска изделий.

Тема 4. Этапы и последовательность проектирования технологического процесса сборки

Последовательность технологического процесса сборки:

- установление серийности и целесообразности организационной формы сборки, определение ее такта и ритма;
 - анализ сборочных чертежей и технологичность конструкции;
- выбор метода достижения точности сборки на основе анализа и расчета размерных цепей (полная, неполная, групповая взаимозаменяемость, регулировка, пригонка);

- определение целесообразной степени дифференциации или концентрации сборочных операций;
- установление последовательности сборки, составление схемы общей сборки и сборки отдельных сборочных единиц;
 - выбор способа сборки, контроля и испытаний;
- выбор технологического оборудования и оснастки, проектирование специальных средств технологического оснащения (при необходимости);
 - нормирование сборочных работ;
 - расчет экономических показателей сборки;
 - разработка планировки оборудования и рабочих мест;
 - оформление технологической документации.

Тема 5. Организационные формы сборки

Разделение сборки по перемещению собираемого изделия на стационарную и подвижную, по организации производства - на непоточную и поточную. Технологический анализ сборочных чертежей. Особенности технологичности конструкций сборочных единиц в условиях автоматической сборки.

Тема 6. Выбор метода достижения точности сборки

Методы достижения точности замыкающего звена при сборке: полной взаимозаменяемости, неполной взаимозаменяемости, групповой взаимозаменяемости, регулирования, пригонки.

Тема 7. Последовательность и содержание сборочных операций. Схемы сборки

Зависимость последовательности сборки от: конструкции изделия; компоновки деталей; метода достижения требуемой точности; функциональной взаимосвязи элементов изделия; конструкции базовых элементов; условия монтажа силовых и кинематических передач; наличия легко повреждаемых элементов; размеров и массы присоединяемых элементов.

Технологические схемы сборки и их последовательность.

Тема 8. Технология балансировки

Значение балансировки для вращающихся деталей и сборочных единиц в машинах. Дисбаланс. Способы и средства статической балансировки. Способы и средства динамической балансировки. Способы устранения дисбаланса ротора. Точность балансировки.

Тема 9. Выбор сборочного оборудования, оснастки и подъемнотранспортных средств

Сборочное оборудование. Технологическое оборудование. Вспомогательное оборудование. Сборочный и слесарный инструмент. Сборочные приспособления. Нормирование сборочных операций. Технико-

экономическая оценка и основные показатели технологического процесса сборки. Документация технологического процесса сборки: маршрутная карта; операционная карта; карта эскизов; технологическая инструкция; ведомость оснастки; ведомость технологических документов.

Испытание собранных изделий.

Тема 10. Общие сведения о технологической оснастке механосборочного производства.

Понятие о технологической оснастке механосборочного производства. Классификация приспособлений по их целевому назначению, по степени специализации, по уровню механизации и автоматизации и другим признакам. Системы станочных приспособлений в соответствии с ЕСТПП, их технологические характеристики и область применения. Приспособления, элемент технологической или измерительной системы. приспособлений на точность обработки, сборки и контроля. Элементы, входящие в состав приспособлений и выполняемые ими функции. Общие требования, предъявляемые приспособлениям. Нормализация К приспособлений Обозначение стандартизация И ИΧ элементов. приспособлений в технической документации.

Тема 11. Методика проектирования станочных приспособлений.

проектирования. Формулирование Исходные данные ДЛЯ функционального назначения и технических требований на приспособление. Общие правила выбора средств технологического оснащения. Последовательность выбора систем технологической оснастки. Анализ влияния основных факторов на выбор систем станочного приспособления. Технико-экономические расчеты, проводимые при выборе стандартных приспособлений. Экономические расчеты целесообразности систем применения специальных приспособлений. Последовательность и методика проектирования специальных станочных приспособлений. Основные направления в проектировании приспособлений.

Тема 12. Проектирование элементов приспособления.

Принципы базирования заготовок (изделий) в приспособлениях. Классификация баз. Погрешность установки заготовок в приспособлениях; погрешность базирования, закрепления, фиксации установки И приспособлений на станке. Методика расчета приспособлений на точность: проектная и проверочная задачи. Типовые схемы установки заготовок (изделий) в приспособлениях и расчет погрешностей базирования. Расчет точности базирования изготавливаемых, собираемых, транспортируемых и контролируемых изделий или инструментов для наиболее распространенных схем их базирования (на призмах, в центрах, по трем перпендикулярным плоскостям, по плоскости и двум отверстиям). Погрешность закрепления. Погрешность положения заготовки, вызванная неточностью приспособления. Установочные элементы приспособлений, их конструктивное исполнение, материалы и эксплуатационные характеристики, область приме-нения. Реализация технологической схемы базирования конструкции приспособлений. Определение типа установочных элементов приспособлений, количества расположения ИХ И В соответствии теоретической схемой базирования заготовок и требуемой точности обработки

Тема 13. Закрепление заготовок в приспособлении, зажимные устройства и силовые приводы приспособлений.

Силы, действующие на заготовку (изделие) в процессе обработки, сборки и контроля. Выбор схем закрепления заготовок, составление схемы сил, действующих на заготовку в процессе обработки. Методика расчета сил зажима заготовок (изделия), обеспечивающих неизменность ее положения, достигнутого при базировании. Типовые схемы расчета. Функциональное назначение зажимных устройств, приспособлений и определяемые к ним Элементарные зажимные устройства. Клиновые Зажимные устройства, основанные на принципе клина: плунжерные, винтовые, эксцентриковые. Рычажные зажимы. Центрирующие установочнозажимные элементы: цанговые зажимы, патроны гидропластом. Конструктивное исполнение установочно-зажимных устройств, методика их расчета, область применения. Стандартизация зажимных устройств. Методика выбора типа зажимных устройств. Силовые приводы и устройства приспособлений. Пневматические, гидравлические, пневмогидравлические, механо-гидравлические, электромеханические, центробежноинерционные, электромагнитные, магнитные, вакуумные привод – элементы конструкции и расчета. Комбинированные зажимные характеристика **устройства**. Технологическая силовых приводов, предъявляемые к ним требования и область применения. Конструкции стандартных зажимных устройств и элементов силовых приводов.

Тема 14. Корпус и вспомогательные элементы приспособлений.

Функциональное назначение, особенности применения. Делительные устройства. Кондукторы и их расчет. Функциональное назначение, основные типы приспособлений, предъявляемые к ним требования. Устройства и приспособления для закрепления режущего инструмента на станках различного типа. Особенности проектирования приспособлений для установки и за-крепления режущего инструмента. Методика проектирования и расчет многоинструментальных сверлильных головок. Конструкции стандартных приспособлений для закрепления режущего инструмента.

Тема 15. Сборочные приспособления.

Основные виды сборочных приспособлений, их назначение и особенности проектирования. Методика и последовательность

проектирования сборочных приспособлений. Силовые и расчеты на точность сборочных приспособлений. Приспособления для автоматической сборки

Тема 16. Станочные приспособления для переменнопоточного производства и групповой обработки; для автоматических линий; для станков с ЧПУ и ГПС.

Основные системы переналаживаемых приспособлений: элементы конструкций и расчет. Приспособления-спутники для автоматических линий, станков с ЧПУ и ГПС; особенности конструктивного оформления, проектирования и расчета. Направления развития конструкций приспособлений для станков с ЧПУ и ГПС. Особенности приспособлений для роботизированного производства.

1. Перечень учебно-методического обеспечения для самостоятельной работы по дисциплине

1. Методические указания для обучающихся по освоению дисциплины «Технология сборки и оснастка машиностроительных производств».

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Структура фонда оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Технология сборки и оснастка машиностроительных производств» приведена в Приложении 1 к настоящему Положению.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

технологии сборки машиностроении: учеб.пособие / В — М.: ИНФРА-М, И.В. Шрубченко, Т.А. Дуюн, А.А. Погонин [и др.]. 2019. — 235 образование: c. (Высшее Бакалавриат). www.dx.doi.org/10.12737/textbook_59ccdebc96b2b3.48630038. Режим доступа: http://znanium.com/catalog/product/1003407 2. Тарабарин, Проектирование технологической O. И.

2. Тарабарин, О. И. Проектирование технологической оснастки в машиностроении: учебное пособие / О. И. Тарабарин, А. П. Абызов, В. Б. Ступко. — 2-е изд., испр. и доп. — Санкт-Петербург: Лань, 2021. — 304 с. — ISBN 978-5-8114-1421-5. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/168524 (дата обращения: 20.10.2021). — Режим доступа: для авториз. пользователей.

3. Технологическая оснастка : учебное пособие / В. Г. Мальцев, А. П. Моргунов, Н. С. Морозова, Р. Л. Артюх. — Омск : ОмГТУ, 2019. — 134 с. — ISBN 978-5-8149-2951-8. — Текст : электронный // Лань : электроннобиблиотечная система. — URL: https://e.lanbook.com/book/149158 (дата обращения: 20.10.2021). — Режим доступа: для авториз. пользователей.

Дополнительная литература:

- 1. Блюменштейн, В. Ю. Проектирование технологической оснастки : учебное пособие для вузов / В. Ю. Блюменштейн, А. А. Клепцов. 4-е изд., стер. Санкт-Петербург : Лань, 2021. 220 с. ISBN 978-5-8114-7826-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/166346 (дата обращения: 20.10.2021). Режим доступа: для авториз. пользователей.
- 2. Иванов, И. С. Расчет и проектирование технологической оснастки в машиностроении: Учебное пособие / Иванов И.С. М.:НИЦ ИНФРА-М, 2018. 198 с.: (Высшее образование: Бакалавриат). ISBN 978-5-16-006705-6. Текст: электронный. URL: https://znanium.com/catalog/product/959399 (дата обращения: 20.10.2021). Режим доступа: по подписке.
- 3. Иванов, В. П. Оборудование и оснастка промышленного предприятия: Учебное пособие / Иванов В.П., Крыленко А.В. Москва :НИЦ ИНФРА-М, Нов. знание, 2016. 235 с. (Высшее образование) ISBN 978-5-16-011746-1. Текст : электронный. URL: https://znanium.com/catalog/product/542473 (дата обращения: 20.10.2021). Режим доступа: по подписке.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Интернет-ресурсы:

http://www.biblioclub.ru/

http://www.diss.rsl.ru/

http://www.rucont.ru/

http://www.znanium.com/

http://www.book.ru

http://e.lanbook.com/

http://www.biblio-online.ru

Elibrary

http://ies.unitech-mo.ru/

http://unitech-mo.ru/

9. Методические указания для обучающихся по освоению дисциплины

Методические указания для обучающихся, по освоению дисциплины, приведены в Приложении 2 к настоящему Положению

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: MSOffice, Excel.

Информационные справочные системы: не предусмотрены курсом дисциплины

Ресурсы информационно-образовательной среды «Университет»: Рабочая программа и методическое обеспечение по дисциплине «Технология сборки и оснастка машиностроительных производств».

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лекционные занятия:

- аудитория, оснащенная презентационной техникой (проектор, экран);
- комплект электронных презентаций/слайдов.

Практические занятия:

- компьютерный класс с проектором для интерактивного обучения и проведения лекций в форме слайд-презентаций, оборудованный современными лицензионными программно-техническими средствами: операционная система не ниже Windows XP; офисные программы MS Office 7;
- рабочее место преподавателя, оснащенное компьютером с доступом в Интернет;
- рабочие места студентов, оснащенные компьютерами с доступом в Интернет.

Проведение компьютерного тестирования может осуществляться в компьютерном классе университета, а также с использованием возможностей информационно-обучающей среды.

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ

КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

«ТЕХНОЛОГИЯ СБОРКИ И ОСНАСТКА МАШИНОСТРОИТЕЛЬНЫХ ПРОИЗВОДСТВ»

(Приложение 1 к рабочей программе)

Направление подготовки: 15.03.06 «Мехатроника и робототехника»

Направленность (профиль): Автоматизация производственных процессов

Уровень высшего образования: бакалавриат

Форма обучения: очная

Королёв 2023

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

№ п/п	Индекс компете нции	Содержание компетенции (или ее	Раздел дисциплины, обеспечиваю	В результате изучения раздела дисциплины, обеспечивающего формирование компетенции (или ес части), обучающийся должен:			
		части)*	щий формирован ие компетенци и (или ее части)	Трудовые действия	Необходимые умения	Необходимые знания	
1	ПК-1	Способен анализировать технологическ ие операции механосборочн ого производства с целью выявления переходов, подлежащих автоматизации и механизации	Темы 1-16	Способен анализировать оборудование, средства технологическог о оснащения, средства измерения, приемы и методы работы, применяемые при выполнении технологических процессов, обрабатывать и анализировать затраты времени технологических процессов Способен формулировать предложения по сокращению затрат ручного труда, внедрению рациональных приемов и методов труда при выполнении подъемнотранспортных, погрузочноразгрузочных операций механосборочно	Умеет выявлять наиболее трудоемкие приемы и выполнять структурную детализацию затрат времени при выполнении операций. Умеет рассчитывать эффективность выполнения технологических и вспомогательны х операций, определять узкие месса в технологических процессах.	Знает основы психофизиологии , гигиены и эргономики труда, методы исследования и измерения трудовых затрат. Знает технологические возможности и принципы выбора средств автоматизации и механизации технологических, подъемнотранспортных, погрузочноразгрузочных операций механосборочног о производства. Знает средства технологического оснащения, контрольноизмерительные приборы и инструменты, применяемые в машиностроении	
2	ПК-3	Способен проводить проектные и опытно- конструкторск ие работы по изготовлению средств автоматизации	Темы 3,6,11,13,16	го производства. Способен осуществлять сбор исходных для проведения проектных и	Умеет устанавливать исходные данные для проведения проектных и опытно-конструкторские работ по	Знает технические требования, предъявляемые к машиностроитель ным изделиям; основные свойства конструкционных	
		и механизации технологическ их, подъемно-		опытно- конструкторс кие работ по	изготовлению средств автоматизации и	материалов машиностроитель ных изделий,	

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания.

Характеристика уровней освоения компетенции						
Уровни	Содержание	Проявления				
Компетенция не	Результаты обучения	Допущенные ошибки и				
сформирована	свидетельствуют об усвоении	неточности показывают,				
	обучающимися некоторых,	что обучающиеся не				
	элементарных знаний основных	овладели необходимой				
	вопросов	системой знаний				
Базовый	Обучающийся обладает	Обучающийся способен				
	необходимой системой знаний	понимать и				
	и владеет некоторыми	интерпретировать				
	умениями	освоенную информацию,				
		что является основой				
		успешного формирования				
		умений и навыков для решения				
		практикоориентированных				
		задач				
Продвинутый	Обучающийся демонстрирует	Обучающийся способен				
	результаты на уровне	анализировать,				
	осознанного выполнения	проводить сравнение и				
	трудовых действий, владения	обоснование выбора				
	учебным материалом,	методов решения				
	учебными умениями и	заданий в				

	навыками	практикоориентированных
		ситуациях
Высокий	Высокий уровень является	Обучающийся способен
	основой для формирования	использовать сведения из
	универсальных.	различных источников для
	общепрофессиональных и	успешного исследования и
	профессиональных	поиска решения в
	компетенций;	нестандартных
	соответствующих требованиям	практикоориентированных
	федерального государственного	ситуациях
	образовательного стандарта	

Код компет енции	Инструменты, оценивающие сформированность компетенции	Этапы и показатель оценивания компетенции	Шкала и критерии оценки	
ПК-1, ПК-3	Контрольная работа	А) полностью сформирована (компетенция, освоена на высоком уровне) - 5 баллов Б) частично сформирована: • компетенция освоена на продвинутом уровне - 4 балла; • компетенция освоена на базовом уровне - 3 балла; В) не сформирована компетенция не сформирована) - 2 и менее баллов Например: Проводится в письменной форме. 1. Выбор оптимального метода решения задачи (1 балл). 2. Умение применить выбранный метод (1 балла). 3. Логический ход решения правильный, но имеются арифметические ошибки в расчетах (1 балла). 4. Решение задачи и получение правильного результата (2 балла). 5. Задача не решена вообще (0 баллов). Максимальная оценка		
ПК-1, ПК-3	Доклад в презентационной форме	А) полностью сформирована (компетенция, освоена на высоком уровне) - 5 баллов Б) частично сформирована: • компетенция освоена на продвинутом уровне - 4 балла; • компетенция освоена на базовом уровне - 3 балла; В) не сформирована	Проводится в письменной форме Критерии оценки: 1.Соответствие содержания реферата заявленной тематике (1 балл). 2.Качество источников и их количество при подготовке работы (1 балл). 3.Владение информацией и способность отвечать на вопросы аудитории(1 балл). 4.Качество самой представленной работы (1 балл). 5.Оригинальность подхода и всестороннее раскрытие	

компетенция не сформирована) - 2 и	выбранной тематики (1 балл). Максимальная сумма баллов - 5
менее баллов	баллов.

3. Типовые контрольные задания или иные материалы, необходимые для оценки, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы Примерная тематика контрольных работ

- 1. Исходные данные для проектирования технологических процессов сборки
- 2. Технологический процесс сборки часть производственного процесса, содержащая действия по установке и образованию соединений составных частей изделия.
 - 3. Неподвижные неразъемные соединения.
 - 4. Подвижные неразъемные соединения.
 - 5. Технология балансировки
- 6. Значение балансировки для вращающихся деталей и сборочных единиц в машинах.
 - 7. Дисбаланс.
 - 8. Способы и средства статической балансировки.
 - 9. Способы и средства динамической балансировки.
 - 10. Способы устранения дисбаланса ротора.
 - 11. Точность балансировки.
 - 12. Сборочное оборудование.
 - 13. Технологическое оборудование.
 - 14. Вспомогательное оборудование.
 - 15. Сборочный и слесарный инструмент.
 - 16. Сборочные приспособления.
 - 17. Нормирование сборочных операций.
- 18. Технико-экономическая оценка и основные показатели технологического процесса сборки.
- 19. Документация технологического процесса сборки: маршрутная карта; операционная карта; карта эскизов; технологическая инструкция; ведомость оснастки; ведомость технологических документов.
 - 20. Испытание собранных изделий.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Формой контроля знаний по дисциплине «Технология сборки и оснастка машиностроительных производств» являются две текущие аттестации в виде тестов и заключительная аттестация в виде зачета с оценкой.

Неделя текущего контроля	Вид оценочного средства	Код компетенций, оценивающий знания, умения, навыки	Содержание оценочного средства	Требования к выполнению	Срок сдачи (неделя семестра)	Критерии оценки по содержанию и качеству с указанием баллов
В соответств ии с графиком учебного процесса	тестирование	ПК-1, ПК-3	25 вопросов	Компьютерное тестирование; время, отведенное на процедуру -30 минут	Результаты тестирования предоставляю тся в день проведения процедуры	соотношением. Не явка -0 Удовлетворительн о - от 51% правильных ответов.
В соответств ии с графиком учебного процесса	тестирование	ПК-1, ПК-3	25 вопросов	Компьютерное тестирование; время, отведенное на процедуру -30 минут	Результаты тестирования предоставляю тся в день проведения процедуры	Хорошо - от 70%. Отлично — от 90%. Критерии оценки определяются процентным соотношением. Не явка -0 Удовлетворительн о - от 51% правильных ответов. Хорошо - от 70%. Отлично — от 90%.
В соответств ии с графиком учебного процесса	Зачет с оценкой	ПК-1, ПК-3	2 вопроса и задача	Зачет с оценкой проводится в письменной форме, путем ответа на вопрос и решения практическог	Результаты зачета с оценкой предоставля ются в день проведения зачета с оценкой	Критерии оценки: «Отлично»: • знание основных понятий предмета; • умение использовать и применять

	1	1	T T	
			о задания,	полученные
				знания на
			время,	практике;
			отведенное	• работа на
			на процедуру	практических
			– 0,25 часа	занятиях;
			на студента.	• знание
				основных
				научных
				теорий,
				изучаемых
				предметов;
				• ответ на
				вопросы
				билета.
				«Хорошо»:
				 знание
				основных
				понятий
				предмета;
				• умение
				использовать и
				применять
				полученные
				знания на
				практике;
				• работа
				на практических
				занятиях;
				 знание
				основных
				научных теорий,
				изучаемых
				предметов;
				• ответы
				на вопросы
				билета
				• с ошибкой
				решено
				практическое
				задание
				«Удовлетворите
				льно»:
				• демонстрирует
				частичные
				знания по
				темам
				дисциплин;
				• незнание
				неумение
				использовать и
				применять
				полученные
				знания на
				практике;
				• не работал на
				практических
				занятиях; «Неудов детвор
				«Неудовлетвор
				ительно»:
				• демонстрирует
				частичные

			знания	по
			темам	
			дисциплин;	
			• незнание	
			основных	
			понятий	
			предмета;	
			• неумение	
			использоваті	ьи
			применять	
			полученные	
			знания	на
			практике;	
			• не работал	на
			практически	X
			занятиях;	
			не отвечает на	ì
			вопросы.	

4.1. Примерные типовые вопросы, выносимые на тестирование

Тесты используются в режиме промежуточного контроля. По форме заданий выбраны закрытые тесты (с выборочным ответом). Каждому вопросу соответствует один вариант ответа.

1. Деталь – это

- а) составная часть изделия, которая может быть собрана самостоятельно
- б) вид изделия, выпускаемый на предприятии
- в) предмет, изготавливаемый на предприятии
- г) вид изделия, полученный из одного куска однородного материала без применения сборки

2. Сборочная единица – это

- а) составная часть изделия
- б) предмет производства, подлежащий изготовлению на предприятии
- в) изделие, состоящие из двух или более частей, соединенных между собой на предприятии изготовителе
- г) несколько специфированных изделий, служащих для выполнения основных функций

3. Монтаж – это работы

- а) по соединению отдельных деталей
- б) связанные со сборкой и установкой машин и конструкций
- в) связанные с полной или частичной разборкой машин
- г) связанные с изготовлением и соединением сборочных единиц

4. Разъемные соединения образуют с помощью

- а) клепки
- б) шпилек
- в) штифтов
- г) пайки

5. Балансировкой деталей называется операция

- а) пригонки деталей и сборочных единиц
- б) по устранению биения соединений
- в) по устранению неуравновешенности деталей и сборочных единиц
- г) пригонки и регулирования сопрягаемых поверхностей

6. Под общей сборкой понимают:

- а) получение готового изделия
- б) соединение составных частей изделия
- в) сборку готовых изделий из сборочных единиц и деталей
- г) законченную часть технологического процесса сборки

7. Какая организационная форма сборки обеспечивает наибольшую производительность труда, наименьшую себестоимость; применяется в массовом производстве?

- а) стационарная поточная
- в) стационарная непоточная
- б) поточная подвижная
- г) непоточная подвижная

8. Дополните утверждение: целью механических испытаний является

- а) установление правильности взаимодействия движущихся частей и их приработка
- б) установление правильности расположения узлов механизма
- в) повышение надежности работы узла
- г) дать заключение о годности механизма

9. Каким методом может производиться нагрев охватывающих деталей при получении прессового соединения

- а) в нагретом масле
- б) в электрических и газовых нагревателях
- в) электрическим током
- г) все указанные варианты ответов правильные

10. Каким методом контролируют правильность зацепления зубчатых колес?

- а) с помощью щупа
- в) приработкой зубчатой пары
- б) по окраске
- г) прокатыванием между зубьями свинцовой проволоки

- 11. По заданному описанию определите метод сборки. После изготовления деталей производится их сортировка по размерам в группы, в процессе сборки сборочной единицы в нее входят детали одной группы, что обеспечивает необходимую посадку
- а) сборка с пригонкой
- в) метод неполной взаимозаменяемости
- б) метод полной взаимозаменяемости
- г) метод групповой взаимозаменяемости

12. Установите последовательность сборки зубчатых передач

- а) установка валов с колесами в корпус
- б) установка и закрепление колес на валу
- в) регулировка зацепления

13. Изделием машиностроительного производства называется:

- а) предмет (набор предметов), являющийся продуктом конечной стадии производства (завода, цеха, участка, линии).
- б) продукция, предназначенная для доставки заказчикам или для реализации торговым организациям.
- в) предмет, изготовленный из однородного по наименованию и марке материала, без применения сборочных операций.
- г) это предмет из которого изменением формы, размеров, свойств поверхности или материала изготавливают деталь.

14. Производственный процесс - это

- а) действия по изменению формы детали
- б) изготовление деталей на машиностроительном заводе
- в) совокупность всех действий людей и орудий труда, необходимых на данном предприятии для изготовления или ремонта выпускаемых изделий.
- г) изготовление и ремонт изделий

15. Технологический переход - это

- а) законченная часть технологической операции, характеризуемая постоянством применяемого инструмента и поверхностей, образуемых обработкой
- б) законченная часть технологической операции, состоящая из действий человека и оборудования, которые не сопровождаются изменением свойств предметов труда
- в) установка заготовки, смена режущего инструмента, переустановка заготовки и т. д.
- г) однократное перемещение инструмента относительно заготовки

16. Из предложенных вариантов выберите данные, не являющиеся основными. При проектировании технологического процесса должны быть известны следующие исходные данные

- а) рабочие чертежи детали и сборочной единицы, в которую она входит
- б) технические требования на изготовление детали, определяющие требования точности и качества обработки, а также возможные особые требования (твердость, структура материала, термическая обработка, балансировка, подгонка по массе, гидравлические испытания и т. д.).
- в) программное задание и срок, в течение которого должна быть выполнена программа выпуска деталей.
- г) данные о наличии оборудования или о возможности его приобретения.
- д) количество рабочих для выполнения изделия.

17. Определите правильную строчку

- а) методы сборки с полной взаимозаменяемостью обычно применяют в массовом производстве б) методы сборки с полной взаимозаменяемостью обычно применяют в крупносерийном производстве
- в) методы сборки с полной взаимозаменяемостью обычно применяют в массовом производстве точных деталей
- г) методы сборки с полной взаимозаменяемостью обычно применяют в производстве любого типа

18. По предложенному описанию определите вид неуравновешенности: возникает при смещении центра тяжести детали относительно оси ее вращения на определенную величину

- а) динамическая
- б) статическая
- в) эти признаки не определяют вид неуравновешенности
- г) признаки характерны для статической и динамической неуравновешенности

19. Специализированные станочные приспособления включают в себя:

- А) специализированные безналадочные приспособления;
- Б) специализированные наладочные приспособления;
- В) сборно-разборные приспособления;
- Г) специальные наладки;
- Д) накладные кулачки патронов.

Исключите неверные варианты.

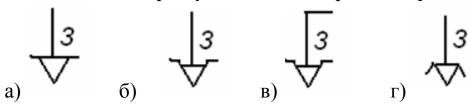
20. Погрешность закрепления это:

- А) разница между наибольшей и наименьшей величинами проекций смещения измерительной базы на направление выполняемого размера в результате приложения к заготовке силы закрепления;
- Б) отклонение фактически достигнутого положения заготовки при базировании от требуемого;

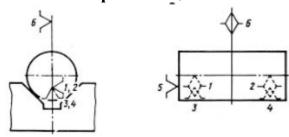
- В) отклонение изготовления станочного приспособления;
- Г) погрешность зажимного механизма;
- Д) погрешность разжимного механизма.

21. К самотормозящим устройствам станочных приспособлений относят:

- А) винтовые;
- Б) клиновые;
- В) эксцентриковые;
- Г) пневмогидравлические.
- Д) спирально-реечные.

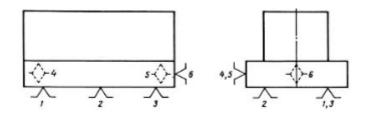

Исключите неверный ответ.

22. К самоцентрирующим станочным приспособлениям относят:


- А) винтовые четырёхкулачковые патроны с независимым перемещением кулачков;
- Б) клиновые патроны;
- В) сверлильные трёхкулачковые патроны;
- Г) мембранные патроны;
- Д) спирально-реечные трёхкулачковые патроны.

Исключите неверный ответ.

23. Обозначение трехкулачкового токарного патрона



24. Укажите направляющие базы

- a) 1, 2, 3, 4, 5
- б) 5, 6
- (B) 5, 6, 1, 2
- г) 1, 2, 3, 4

25. Укажите установочные базы

- a) 1, 2, 3
- б) 4, 5, 6
- в) 4, 5
- г) 5,6

4.2. Типовые вопросы, выносимые на зачет с оценкой

- 1. Последовательность и содержание сборочных операций.
- 2. Схемы сборки.
- 3. Технологические схемы сборки
- 4. Зависимость последовательности сборки от конструкции изделия.
- 5. Зависимость последовательности сборки от компоновки деталей.
- 6. Зависимость последовательности сборки от метода достижения требуемой точности.
- 7. Зависимость последовательности сборки от функциональной взаимосвязи элементов изделия.
- 8. Зависимость последовательности сборки от конструкции базовых элементов.
- 9. Зависимость последовательности сборки от условия монтажа силовых и кинематических передач.
- 10. Зависимость последовательности сборки от наличия легко повреждаемых элементов.
- 11. Зависимость последовательности сборки от размеров и массы присоединяемых элементов.
- 12. Значение балансировки для вращающихся деталей и сборочных единиц в машинах. Дисбаланс. Способы и средства статической балансировки. Способы и средства динамической балансировки. Способы устранения дисбаланса ротора. Точность балансировки.
- 13. Выбор сборочного оборудования, оснастки и подъемнотранспортных средств
 - 14. Сборочное оборудование.
 - 15. Технологическое оборудование.
 - 16. Вспомогательное оборудование.
 - 17. Сборочный и слесарный инструмент.
 - 18. Сборочные приспособления.
 - 19. Нормирование сборочных операций.
- 20. Технико-экономическая оценка и основные показатели технологического процесса сборки.
 - 21. Документация технологического процесса сборки.
 - 22. Маршрутная карта.

- 23. Операционная карта.
- 24. Карта эскизов.
- 25. Технологическая инструкция.
- 26. Ведомость оснастки.
- 27. Ведомость технологических документов.
- 28. Испытание собранных изделий.
- 29. Классификация станочных приспособлений.
- 30. Классификация элементов приспособлений и их назначение.
- 31. Схема установки прямоугольной заготовки с тремя взаимно перпендикулярными базовыми поверхностями. Определения базирующих поверхностей.
- 32. Схема установки валика в пространстве, ее практическое выполнение, определение базирующих поверхностей.
- 33. Схема базирования заготовки по торцу и отверстию с применением установочных пальцев. Степени свободы при этом.
- 34. Схема базирования по плоскости, торцу и отверстию с осью, параллельной плоскости, степени свободы.
- 35. Схемы базирования по плоскости и двум перпендикулярным к ней отверстиям, степени свободы при этом.
- 36. Основные неподвижные опоры, их определение, расположение в приспособлении, материал изготовления.
 - 37. Типы жестких оправок. Типы разжимных оправок.
- 38. Погрешность установки деталей в приспособлениях. Погрешность базирования при установки втулки на разжимной палец (без зазора) и на жесткий палец (с зазором). Условия, при которых погрешность базирования равна нулю
- 39. Назначение зажимных устройств и предъявляемые к ним требования. Методика расчета потребных сил зажима.
- 40. Определение требуемого усилия зажима при установке заготовок в трехкулачковом патроне.
- 41. Винтовые зажимные устройства, конструкции наконечников, сила, развиваемая идеальным винтовым механизмом.
- 42. Разновидности клиновых механизмов, угол трения. Условия торможения клина, схема сил, действующих на зажатый односкосый клин с трением по двум поверхностям.
 - 43. Эксцентриковые зажимы. Виды эксцентриков.
 - 44. Цанговые механизмы, их применение, погрешности базирования.
- 45. Самоцентрирующие зажимные устройства. Призматические зажимные устройства.
 - 46. Мембранные патроны.
- 47. Пневматические приводы. Классификация. Пневматические поршневые приводы одностороннего действия. Схема, область применения.
- 48. Пневматические поршневые приводы одностороннего действия. Схема, область применения.
 - 49. Пневматические диафрагменные приводы, область применения,

достоинства и недостатки.

- 50. Гидравлические силовые приводы, схема, преимущества и недостатки.
- 51. Вспомогательные элементы приспособлений. Направляющие. Механизмы для закрепления и подъема поворотных частей приспособлений. Выталкиватели.
- 52. Множительные (многошпиндельные) головки. Методика расчета и конструирования.
- 53. Расчет приспособления на точность. Выбор расчетных параметров.
- 54. Сборочные приспособления. Классификация и конструкция сборочных приспособлений. Элементы сборочных приспособлений. Особенности проектирования специальных сборочных приспособлений.
- 55. Особенности проектирования приспособлений для станковавтоматов, агрегатных станков и автоматических линий, состоящих из этих станков.
- 56. Особенности проектирования приспособлений для станков с ЧПУ, обрабатывающих центров и гибких производственных систем.
 - 57. Автоматизированное проектирование технологической оснастки.

Итоговое начисление баллов по дисциплине осуществляется в соответствии с разработанной и внедренной балльно-рейтинговой системой контроля и оценивания уровня знаний и внеучебной созидательной активности обучающихся.

Приложение 2

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ

КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

«ТЕХНОЛОГИЯ СБОРКИ И ОСНАСТКА МАШИНОСТРОИТЕЛЬНЫХ ПРОИЗВОДСТВ»

(Приложение 2 к рабочей программе)

Направление подготовки: 15.03.06 «Мехатроника и робототехника»

Направленность (профиль): Автоматизация производственных процессов

Уровень высшего образования: бакалавриат

Форма обучения: очная

Королёв 2023

1. Обшие положения

Целями преподавания дисциплины являются:

- обучение анализировать существующие и проектировать новые технологические процессы сборки машин;
- обучение проектировать технологические процессы сборки изделий;
- обучение проводить исследования по совершенствованию технологии с целью повышения качества изделий, производительности труда и снижения себестоимости.

Основными задачами дисциплины являются:

- изучение производственных и технологических процессов сборки общего машиностроения;
- изучение основных закономерностей и методов сборки сборочных единиц и машин;
- изучение процессов сборки с учетом технологических, конструкторских, экономических параметров;
- умение разрабатывать средства технологического оснащения процесса сборки;
- умение разрабатывать проектную и рабочую техническую документацию сборки;
- изучение методов контроля в соответствии с технической документацией, техническими условиями;
- умение проводить технико-экономическое обоснование принятого варианта сборки.

2. Указания по проведению практических занятий

Практическое занятие 1.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: традиционная технология

Тема и содержание практического занятия: **Введение. Значение сборки при изготовлении машин.** Определение трудоемкости сборочных работ.

Продолжительность занятия – 1/- ч.

Практическое занятие 2.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: традиционная технология

Тема и содержание практического занятия: **Основные виды сборочных соединений.** Изучение разъемных и неразъемных сборочных единиц.

Продолжительность занятия – 1/- ч.

Практическое занятие 3.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: традиционная технология

Тема и содержание практического занятия: **Исходные данные для проектирования технологических процессов сборки.** Сборочные чертежи изделий.

Продолжительность занятия -2/- ч.

Практическое занятие 4.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: традиционная технология

Тема содержание практического занятия: **Этапы и последовательность проектирования технологического процесса сборки.** Последовательность технологического процесса сборки.

Продолжительность занятия -2/- ч.

Практическое занятие 5.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: традиционная технология

Тема и содержание практического занятия: **Организационные формы сборки.** Непоточная и поточная сборки.

Продолжительность занятия – 2/- ч.

Практическое занятие 6.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: традиционная технология

Тема и содержание практического занятия: **Выбор метода достижения точности сборки.** Методы достижения точности замыкающего звена при сборке.

Продолжительность занятия -2/- ч.

Практическое занятие 7.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: традиционная технология

Тема и содержание практического занятия: **Последовательность и содержание сборочных операций. Схемы сборки.** Технологические схемы сборки и их последовательность.

Продолжительность занятия -2/- ч.

Практическое занятие 8.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: традиционная технология

Тема и содержание практического занятия: **Технология балансировки.** Устранение дисбаланса ротора.

Продолжительность занятия -2/- ч.

Практическое занятие 9.

Вид практического занятия: смешанная форма практического занятия. Образовательные технологии: традиционная технология Тема и содержание практического занятия: **Выбор сборочного оборудования, оснастки и подъемно- транспортных средств.** Проверка собранной машины на холостом ходу и под нагрузкой. Продолжительность занятия — 2/- ч.

Практическое занятие 10.

Вид практического занятия: смешанная форма практического занятия. Образовательные технологии: традиционная технология Тема и содержание практического занятия: Общие сведения о технологической оснастке механосборочного производства. Обозначение приспособлений в технической документации. Продолжительность занятия — 2/- ч.

Практическое занятие 11.

Вид практического занятия: смешанная форма практического занятия. Образовательные технологии: традиционная технология Тема и содержание практического занятия: **Методика проектирования станочных приспособлений.**Последовательность выбора систем технологической оснастки. Последовательность и методика проектирования специальных станочных приспособлений. Основные направления в проектировании приспособлений. Продолжительность занятия — 2/- ч.

Практическое занятие 12.

Вид практического занятия: смешанная форма практического занятия. Образовательные технологии: традиционная технология

Тема практического Проектирование содержание занятия: элементов приспособления. Методика расчета приспособлений на точность: проектная и проверочная задачи. Определение установочных элементов приспособлений, ИХ количества расположения в соответствии с теоретической схемой базирования заготовок и требуемой точности обработки

Продолжительность занятия -2/- ч.

Практическое занятие 13.

Вид практического занятия: смешанная форма практического занятия. Образовательные технологии: традиционная технология

Тема и содержание практического занятия: Закрепление заготовок в приспособлении, зажимные устройства и силовые приводы приспособлений. Конструкции стандартных зажимных устройств и элементов силовых приводов.

Продолжительность занятия -2/- ч.

Практическое занятие 14.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: традиционная технология

практического Тема содержание Корпус занятия: Особенности вспомогательные элементы приспособлений. приспособлений проектирования ДЛЯ установки закрепления И инструмента. Методика проектирования режущего И расчет многоинструментальных сверлильных головок.

Продолжительность занятия -2/- ч.

Практическое занятие 15.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: традиционная технология

Тема и содержание практического занятия: **Сборочные приспособления.** Методика и последовательность проектирования сборочных приспособлений. Силовые и расчеты на точность сборочных приспособлений.

Продолжительность занятия -2/- ч.

Практическое занятие 16.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: традиционная технология

Тема содержание практического Станочные занятия: переменнопоточного приспособления для производства групповой обработки; для автоматических линий; для станков с ЧПУ и ГПС. Приспособления-спутники для автоматических линий, станков с ЧПУ и ГПС; особенности конструктивного оформления, проектирования и расчета. Направления развития конструкций Особенности приспособлений ДЛЯ станков ЧПУ ГПС. И приспособлений для роботизированного производства.

Продолжительность занятия -4/- ч.

3. Указания по проведению лабораторного практикума

Выполнение лабораторного практикума Учебным планом не предусмотрено.

4. Указания по проведению самостоятельной работы студентов

Объем времени и виды самостоятельной работы

<u>№</u> п/п	Наименование блока (раздела) дисциплины	Виды СРС
1.	Тема 4. Этапы и последовательнос ть проектирования технологического процесса сборки	Подготовка докладов по темам: 1. Степень дифференциации техпроцесса. 2. Основные точностные характеристики. 3. Оформление технологической документации
2.	Тема 5. Организационные формы сборки	Подготовка докладов по темам: 1. Подвижная сборка. 2. Технологические карты процесса сборки.
3	Тема 6. Выбор метода достижения точности сборки	Подготовка докладов по темам: 1. Виды сборочных единиц 2. Метод пригонки. 3. Метод регулироавния
4.	Тема 7. Последовательнос ть и содержание сборочных операций. Схемы сборки	Подготовка рефератов по темам: 1. Нормирование сборочных работ. 2. Правила разработки схем сборки 3. Роль схем сборки при разработке технологического процесса сборки
5.	Тема 8. Технология балансировки	Подготовка докладов по темам: 1. Средства измерений при балансировке. 2. Средства механизации и автоматизации.
6.	Тема 9. Выбор сборочного оборудования, оснастки и подъемнотранспортных средств	Подготовка докладов по темам: 1. Приспособления, применяемые при сборке. 2. Влияние типа производства на выбор оснастки и оборудования для сборки. 3Виды механизированных приспособлений для сборки 4. Особенности выполнения сборочных операций различных узлов электрической машины.

5. Указания по подготовке контрольных работ для студентов

5.1. Требования к структуре

Структура контрольной работы должна способствовать раскрытию темы: иметь титульный лист, содержание, введение, основную часть, заключение, список литературы.

5.2. Требования к содержанию (основной части)

Во введении обосновывается актуальность темы, определяется цель работы, задачи и методы исследования.

При определении целей и задач исследования необходимо правильно их формулировать. Так, в качестве цели не следует употреблять глагол «сделать». Правильно будет использовать глаголы: «раскрыть», «определить», «установить», «показать», «выявить» и т.д.

Основная часть работы включает 3 вопроса, каждый из которых посвящается решению задач, сформулированных во введении, и заканчивается констатацией итогов.

Содержание работы должно дополнительно раскрываться таблицами, графическим материалом (рисунками, схемами и т.п.).

Необходимо давать ссылки на используемую Вами литературу.

Заключение должно содержать сделанные автором работы выводы, итоги исследования.

Вслед за заключением приводится список литературы, который должен быть составлен в соответствии с установленными требованиями. Если в работе имеются приложения, они оформляются на отдельных листах, и должны быть соответственно пронумерованы.

5.3. Требования к оформлению

Объём работы — 15 - 20 страниц формата A 4, напечатанного с одной стороны текста (1,5 - интервал, шрифт - Times New Roman).

5.4. Примерная тематика контрольных работ

- 21. Исходные данные для проектирования технологических процессов сборки
- 22. Технологический процесс сборки часть производственного процесса, содержащая действия по установке и образованию соединений составных частей изделия.
 - 23. Неподвижные неразъемные соединения.
 - 24. Подвижные неразъемные соединения.
 - 25. Технология балансировки
- 26. Значение балансировки для вращающихся деталей и сборочных единиц в машинах.
 - 27. Дисбаланс.
 - 28. Способы и средства статической балансировки.
 - 29. Способы и средства динамической балансировки.
 - 30. Способы устранения дисбаланса ротора.
 - 31. Точность балансировки.
 - 32. Сборочное оборудование.
 - 33. Технологическое оборудование.
 - 34. Вспомогательное оборудование.
 - 35. Сборочный и слесарный инструмент.
 - 36. Сборочные приспособления.
 - 37. Нормирование сборочных операций.

- 38. Технико-экономическая оценка и основные показатели технологического процесса сборки.
- 39. Документация технологического процесса сборки: маршрутная карта; операционная карта; карта эскизов; технологическая инструкция; ведомость оснастки; ведомость технологических документов.
 - 40. Испытание собранных изделий.

6. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1.Основы технологии сборки в машиностроении: учеб.пособие / И.В. Шрубченко, Т.А. Дуюн, А.А. Погонин [и др.]. М.: ИНФРА-М, 2019. 235 с. (Высшее образование: Бакалавриат). www.dx.doi.org/10.12737/textbook_59ccdebc96b2b3.48630038. Режим доступа: http://znanium.com/catalog/product/1003407
- 2.Тарабарин, О. И. Проектирование технологической оснастки в машиностроении : учебное пособие / О. И. Тарабарин, А. П. Абызов, В. Б. Ступко. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2021. 304 с. ISBN 978-5-8114-1421-5. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/168524 (дата обращения: 20.10.2021). Режим доступа: для авториз. пользователей.
- 3. Технологическая оснастка: учебное пособие / В. Г. Мальцев, А. П. Моргунов, Н. С. Морозова, Р. Л. Артюх. Омск: ОмГТУ, 2019. 134 с. ISBN 978-5-8149-2951-8. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/149158 (дата обращения: 20.10.2021). Режим доступа: для авториз. пользователей.

Дополнительная литература:

- 4. Блюменштейн, В. Ю. Проектирование технологической оснастки : учебное пособие для вузов / В. Ю. Блюменштейн, А. А. Клепцов. 4-е изд., стер. Санкт-Петербург : Лань, 2021. 220 с. ISBN 978-5-8114-7826-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/166346 (дата обращения: 20.10.2021). Режим доступа: для авториз. пользователей.
- 5. Иванов, И. С. Расчет и проектирование технологической оснастки в машиностроении: Учебное пособие / Иванов И.С. М.:НИЦ ИНФРА-М, 2018. 198 с.: (Высшее образование: Бакалавриат). ISBN 978-5-16-006705-6. Текст : электронный. URL: https://znanium.com/catalog/product/959399 (дата обращения: 20.10.2021). Режим доступа: по подписке.
- 6. Иванов, В. П. Оборудование и оснастка промышленного предприятия: Учебное пособие / Иванов В.П., Крыленко А.В. Москва :НИЦ ИНФРА-М, Нов. знание, 2016. 235 с. (Высшее образование) ISBN 978-5-16-011746-1. Текст : электронный. URL:

https://znanium.com/catalog/product/542473 (дата обращения: 20.10.2021). – Режим доступа: по подписке.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

http://www.biblioclub.ru/

http://www.diss.rsl.ru/

http://www.rucont.ru/

http://www.znanium.com/

http://www.book.ru

http://e.lanbook.com/

http://www.biblio-online.ru

Elibrary

http://ies.unitech-mo.ru/

http://unitech-mo.ru/

Электронные ресурсы образовательной среды «Университет»

- 1. http://biblioclub.ru/index.php библиоклуб (университетская библиотека);
- 2. http://www.znanium.com электронно-библиотечная система Znanium.com;
- 3. http://e.lanbook.com электронно-библиотечная система издательства «Лань»;
- 4. http://www.rucont.ru/ Национальный цифровой ресурс Руконт межотраслевая электронная библиотека (ЭБС);

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: MSOffice, Excel.

Информационные справочные системы: не предусмотрены курсом дисциплины

Ресурсы информационно-образовательной среды «Университет»: Рабочая программа и методическое обеспечение по дисциплине «Технология сборки и оснастка машиностроительных производств».