

УТВЕРЖДАЮ И.о. проректора А.В. Троицкий

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

«МОДЕЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХЙ ПРОЦЕССОВ»

Направление подготовки: 15.03.05 Конструкторско-технологическое

обеспечение машиностроительных производств

Направленность (профиль): Технология машиностроения

Уровень высшего образования: бакалавриат

Форма обучения: очная, заочная

Королёв 2023

является Рабочая программа составной частью основной профессиональной образовательной программы и проходит рецензирование работодателей составе основной профессиональной стороны В образовательной программы. Рабочая программа актуализируется корректируется ежегодно.

Авторы: д.т.н. Агеенко Ю.И., д.т.н. Пашковский И.Э. Рабочая программа дисциплины (модуля): «Моделирование технологических процессов» – Королев МО: «Технологический университет», 2023.

Рецензент: к.т.н., доцент Сабо С.Е.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки бакалавров 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств и Учебного плана, утвержденного Ученым советом Университета. Протокол № 9 от 11 апреля 2023 г.

Рабочая программа рассмотрена и одобрена на заседании кафедры:

Заведующий кафедрой (ФИО,	Мороз А.П.	Мороз А.П.	Мороз А.П.	Мороз А.П.	
ученая степень,	д.т.н., с.н.с.	д.т.н., с.н.с.	д.т.н., с.н.с.	д.т.н., с.н.с.	
звание, подпись)	Alice	•			
Год утверждения	2023	2024	2025	2026	
(переутверждения)	2023	2027	2023	2020	
Номер и дата	№ 9 от				
протокола заседания	28.03.2023 г.				
кафедры	20.03.2023 1.				

Рабочая программа согласована:

Руководитель ОПОП

д.т.н., профессор Пашковский И.Э.

Рабочая программа рекомендована на заседании УМС:

Год утверждения (переутверждения)	2023	2024	2025	2026
Номер и дата протокола заседания УМС	№ 5 от 11.04.2023 г.			

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО

Целью дисциплины «Моделирование технологических процессов» является изучение современных систем моделирования и оптимизации технологических процессов, используемых в производстве, подготовка студентов к практическому использованию систем автоматизированного проектирования для моделирования технологических процессов.

В процессе обучения обучающийся приобретает и совершенствует следующие компетенции:

Профессиональные компетенции:

- ПК-3 Способен проводить проектные работы и внедрение средств автоматизации и механизации технологических процессов механосборочного производства;
- ПК-8 Способен разрабатывать технологический процесс изготовления опытных образцов машиностроительных изделий;
- ПК-9 Способен разрабатывать технологический процесс изготовления машиностроительных изделий серийного (массового) производства.

Задачами изучения дисциплины являются:

- ознакомление студентов с современными техническими средствами САПР, автоматизированными рабочими местами, автоматизированными проектными бюро и методами их использования;
- ознакомление обучающихся с современными системами моделирования и оптимизации технологических процессов,
- обучение студентов использованию современных программных средств для моделирования технологических процессов.
- подготовка обучающихся к практическому моделированию технологических процессов.

Показатель освоения компетенции отражают следующие индикаторы:

Трудовые действия:

- осуществляет сбор исходных данных для проведения проектных и опытно-конструкторские работ по изготовлению средств автоматизации и механизации технологических, подъемно-транспортных операций механосборочного производства;
- определяет состав и количество средств автоматизации и механизации технологических процессов на основе исходных данных;
- разрабатывает маршрутные технологические процессы изготовления опытных образцов машиностроительных изделий;
- оформляет технологическую документацию на технологические процессы изготовления опытных образцов машиностроительных изделий;
- разрабатывает маршрутную технологию и технологические операции изготовления изделий серийного (массового) производства;
- оформляет технологическую документацию на технологические процессы изготовления изделий серийного (массового) производства.

Необходимые умения:

- умеет устанавливать исходные данные для проведения проектных и опытно-конструкторских работ;
- умеет назначать требования к средствам автоматизации и механизации технологических, подъемно-транспортных операций механосборочного производства;
- умеет выявлять нетехнологичные элементы конструкции опытных образцов машиностроительных изделий;
- умеет разрабатывать предложения по изменению конструкции опытных образцов машиностроительных изделий с целью повышения их технологичности;
- умеет выявлять основные технологические задачи, решаемые при разработке технологических процессов изготовления машиностроительных изделий серийного (массового) производства;
- умеет выбирать схемы базирования и закрепления заготовок машиностроительных деталей серийного (массового) производства.

Необходимые знания:

- знает технические требования, предъявляемые к машиностроительным изделиям; основные свойства конструкционных материалов машиностроительных изделий, характеристики основных видов исходных заготовок и способы их получения;
- знает типы и конструктивные особенности средств автоматизации и механизации технологических, подъемно-транспортных операций механосборочного производства;
- знает нормативно-технические и руководящие документы в области технологичности;
- знает основные критерии и показатели качественной и количественной оценки технологичности конструкции опытных образцов машиностроительных изделий;
- знает порядок согласования и утверждения технологической и конструкторской документации;
- знает основные методы, способы и средства контроля технических требований, предъявляемых к машиностроительным изделиям.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Моделирование технологических процессов» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений, основной профессиональной образовательной программы по направлению подготовки 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств.

Изучение данной дисциплины базируется на ранее изученных дисциплинах: «Теория вероятностей и математическая статистика» и «Теория автоматического управления» и частично освоенных компетенциях ОПК-2; и ПК-1,2,3,9.

Знания и компетенции, полученные при освоении дисциплины «Моделирование технологических процессов», являются базовыми для изучения дисциплин «Технология машиностроения» и «Основы проектирования автоматизированных участков», государственной итоговой аттестации и выполнения выпускной квалификационной работы.

3. Объем дисциплины (модуля) и виды учебной работы

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 часов. Практическая подготовка обучающихся составляет 2 часа.

Таблица 1

Виды занятий	Всего часов	Семестр 5	Семестр 6	Семестр 7	Семестр 8
Общая трудоемкость	144		144	144	
ОЧН	АЯ ФОРМ	А ОБУЧЕН	RИH		
Аудиторные занятия	64		64		
Лекции (Л)	32		32		
Практические занятия (ПЗ)	32		32		
Лабораторные работы (ЛР)	-		-		
Практическая подготовка	2		2		
Самостоятельная работа	80		80		
Курсовые работы (проекты)	КР		-		
Расчетно-графические работы	РГР		-		
Контрольная работа	Кр		+		
Текущий контроль знаний	Тест		+		
Вид итогового контроля	Экзамен		Экзамен		
ЗАОЧІ	НАЯ ФОРМ	ИА ОБУЧЕ	сния		
Аудиторные занятия	16			16	
Лекции (Л)	8			8	
Практические занятия (ПЗ)	8			8	
Лабораторные работы (ЛР)	-			-	
Практическая подготовка	2			2	
Самостоятельная работа	128			128	
Курсовые работы (проекты)	КР			-	
Расчетно-графические работы	РГР			-	
Контрольная работа	Кр			+	
Текущий контроль знаний	Тест			+	
Вид итогового контроля	Экзамен			Экзамен	

4. Содержание дисциплины (модуля)

4.1. Темы дисциплины и виды занятий

Таблица 2

Наименование тем	Лекции, час. очн/заоч	Практические занятия, час, очн/заоч	Занятия в интерактивно й форме, час, очн/заоч	Практическая подготовка час, очн/заоч	Код компете нций
Тема 1. Назначение средств проектирования и моделирования технологических процессов	4/1	4/1	1 / 0,5		ПК-3; ПК-8; ПК-9
Тема 2. Классификация технических средств, участвующих в технологических процессах	4/1	4/1	1 / 0,5		ПК-3; ПК-8; ПК-9
Тема 3. Автоматизированное моделирование технологических процессов с помощью САЕ/CAD/CAM-систем	4/1	4/1	1 / 0,5	2/2	ПК-3; ПК-8; ПК-9
Тема 4. Основные принципы инженерно-конструкторского моделирования технологических процессов	4/1	4/1	1 / 0,5		ПК-3; ПК-8; ПК-9
Тема 5. Технологические процессы с использованием трехмерных компьютерных моделей	8/1	8/1	2/1		ПК-3; ПК-8; ПК-9
Тема 6. N-мерное моделирование технологических процессов	8/1	8/1	2/1		ПК-3; ПК-8; ПК-9
Итого	32/8	32/8	12/4	2/2	

4.2. Содержание тем дисциплины

Тема 1. Назначение средств проектирования и моделирования технологических процессов

Предмет и задачи дисциплины. Постановка задачи автоматизации моделирования технологических процессов. Системный подход к проектированию технологических процессов. Структуризация процесса проектирования технологических процессов. Типизация и унификация проектных решений и средств проектирования технологических процессов. Классификация САПР. Знакомство с интерфейсом САПР Solid Works и построение первой модели.

Тема 2. Классификация технических средств, участвующих в технологических процессах

Классификация технических средств автоматизации и управления. Технические, программно-технические и общесистемные средства автоматизации. Информационно-управляющие вычислительные комплексы. Автоматизированное моделирование технологических процессов в среде Solid Works. Конструкторско-технологическая документация на исполнительные механизмы и устройства, участвующие в технологических процессах. Построение модели в среде Solid Works.

Тема 3. Автоматизированное моделирование технологических процессов подготовки изделий с помощью CAE/CAD/CAM-систем

Процедуры анализа, моделирования, оптимизации проектных решений в САЕ-системах. CALS-технологии. Функции АСУП (ERP-систем). Функции SCADA-систем. Функции систем управления документами документооборотом. Функциональный состав интегрированных САПР. Интерфейсы, языки, форматы межпрограммных обменов САПР. Структурный состав интегрированных САПР. Межпрограммный обмен между САПР Solid Works и AutoCad. Импорт в SolidWorks существующего двухмерного проекта, созданного в программе AutoCAD. Создание трехмерной модели на основе анализа данных двухмерного чертежа.

Тема 4. Основные принципы инженерно-конструкторского моделирования технологических процессов

Единство методики моделирования технологических процессов. структуры однотипных изделий. Комплексность принятия решений. Общность принятия проектных решений. Принятие типовых проектных решений. Многоуровневость (многостадийность) проектных решений. Комплексность современного производства. Инженерноконструкторское моделирование в специальном машиностроении.

Тема 5. Технологические процессы с использованием трехмерных компьютерных моделей

Технологические схемы сборки сложных технических устройств. Схемы и ступени сборки устройств технических систем. Последовательность операций при технологическом процессе сборки. Схемы соответствии с требованиями ЕСКД. Отработка (проверка изделия) на геометрических параметров осуществление точность И характеристик изделия при изменении некоторых его параметров в процессе Разработка сборки. подходов автоматизации проектирования технологических процессов сборки с применением технологий трехмерного моделирования. Визуально-наглядные инструкции сборки.

Тема 6. N-мерное моделирование технологических процессов

2D-образы. 3D-образы. Двухмерное и трехмерное моделирование. Анализ и обработка информации средах N-мерного моделирования В при проектировании технологических процессов. 4D, 5D, 6D проектирование. Средства технологий N-мерного моделирования. Диаграммы Ганта. Средства Анализ информационного обеспечения аддитивных технологий. процессов подготовки излелий сложных технических Роль технологий N-мерного моделирования в организации технологических процессов и управлении ими.

5. Перечень учебно-методического обеспечения для самостоятельной работы по дисциплине

- 1. Методические указания для обучающихся по освоению дисциплины «Моделирование технологических процессов».
- 2. Методические указания для обучающихся по выполнению контрольных работ по дисциплине «Моделирование технологических процессов».

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Структура фонда оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Моделирование технологических процессов» приведена в Приложении 1.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Берлинер Э.М., Таратынов О.В. САПР технолога машиностроителя: Учебник (Высшее образование: Бакалавриат). М.: ФОРУМ: ИНФРА-М, 2019. 336 с. (Высшее образование). ISBN 978-5-00091-043-6. Текст: электронный.
 - URL: https://znanium.com/catalog/product/987419
 - Режим доступа: по подписке.
- 2. Битюцкий В.П. Математическое обеспечение автоматизации проектирования: Учебное пособие / Битюцкий В.П., Битюцкая С.В. М.: Флинта, Изд-во Урал. ун-та, 2017. 72 с. ISBN 978-5-9765-3043-0. Текст: электронный.
 - URL: https://znanium.com/catalog/product/945851
 - Режим доступа: по подписке.
- 2. Шишов О.В. Технические средства автоматизации и управления: учебное пособие / О.В. Шишов. М.: ИНФРА-М, 2021. 396 с. + Доп. материалы [Электронный ресурс]. (Высшее образование: Бакалавриат). ISBN 978-5-16-010325-9. Текст: электронный.
 - URL: https://znanium.com/catalog/product/1157118
 - Режим доступа: по подписке.

Дополнительная литература:

- 1. Конюх В.Л. Проектирование автоматизированных систем производства: Учеб. пособие / В.Л. Конюх. М.: КУРС: НИЦ ИНФРА-М, 2015. 312 с. ISBN 978-5-905554-53-7.
 - URL: http://www.znanium.com/catalog.php?bookinfo=449810.
 - Режим доступа: по подписке.
- 2. Муромцев Д.Ю., Тюрин И.В. Математическое обеспечение САПР. М.: «Лань», 2015. 464 с. ISBN 978-5-8114-1573-1
 - URL: http://e.lanbook.com/books/element.php?pl1_id=42191
 - Режим доступа: по подписке.
- 3. Нартя В.И. Математическое обеспечение чертежа при конструировании деталей в машиностроении: Монография / Нартя В.И. Вологда:Инфра-Инженерия, 2017. 80 с. ISBN 978-5-9729-0170-8. Текст : электронный.
 - URL: https://znanium.com/catalog/product/936011
 - Режим доступа: по подписке.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Интернет-ресурсы:

	imicpher pecypebi.	
1.	Российская государственная библиотека	www.rsl.ru
2.	Библиотека по естественным наукам РАН	http://www.benran.ru
3.	Всероссийский институт научной и технической информации (ВИНИТИ)	http://www.viniti.ru
4.	Государственная публичная научнотехническая библиотека	http://www.gpntb.ru
5.	Научная электронная библиотека eLIBRARY	http://www.elibrary.ru
6.	Национальный цифровой ресурс Руконт – межотраслевая электронная библиотека (ЭБС)	http://www.rucont.ru/
7.	Электронная библиотечная система «Лань»	http://e.lanbook.com/
8.	Университетская библиотека	http://www.biblioclub.ru
9.	Электронно-библиотечная система Znanium	http://znanium.ru
10.	Электронный каталог библиотеки МГОТУ «Технологический университет»	http://unitech- mo.ru/library/resources/electronic- catalogue-fta
	· · ·	——————————————————————————————————————

9. Методические указания для обучающихся по освоению дисциплины

Методические указания для обучающихся по освоению дисциплины (модуля) приведены в Приложении 2.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: MSOffice, Solid Works.

Информационные справочные системы:

- 1. Ресурсы информационно-образовательной среды Университета.
- 2. Рабочая программа и методическое обеспечение по дисциплине «Моделирование технологических процессов».

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лекционные занятия:

- аудитория, оснащенная презентационной техникой (проектор, экран), интерактивной доской Smart Board.

Практические занятия:

- учебный класс, оснащенный вычислительной техникой (ПК), программами для компьютерного моделирования систем управления: Multisim.
- рабочее место преподавателя, оснащенное компьютером с доступом в Интернет;
- рабочие места студентов, оснащенные компьютерами с доступом в Интернет.

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

«МОДЕЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ»

Направление подготовки: 15.03.05 Конструкторско-технологическое

обеспечение машиностроительных производств

Направленность (профиль): Технология машиностроения

Уровень высшего образования: бакалавриат

Форма обучения: очная, заочная

Королёв 2023

1.Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

№ п/п	Индекс компет енции	Содержание компетенции (или ее части)*	Раздел дисциплины, обеспечивающий формирование	В результате изучения раздела дисциплины, обеспечивающего формирование компетенции, (или ее части), обучающийся приобретает:			
			компетенции (или ее части)	Трудовые действия	Необходимые умения	Необходимые знания	
1.	ПК-3	Способен проводить проектные работы и внедрение средств автоматизаци и и механизации технологичес ких процессов механосбороч ного производства.	Тема 1 Тема 2 Тема 3 Тема 4 Тема 5 Тема 6	Осуществляет сбор исходных данных для проведения проектных и опытно-конструкторские работ по изготовлению средств автоматизации и механизации технологических, подъемно-транспортных операций механосборочного производства; Определяет состав и количество средств автоматизации и механизации и механизации технологических процессов на основе исходных данных.	Умеет устанавливать исходные данные для проведения проектных и опытно-конструкторских работ; Умеет назначать требования к средствам автоматизации и механизации технологических, подъемнотранспортных операций механосборочного производства.	Знает технические требования, предъявляемые к машиностроитель ным изделиям; основные свойства конструкционных материалов машиностроитель ных изделий, характеристики основных видов исходных заготовок и способы их получения; Знает типы и конструктивные особенности средств автоматизации и механизации технологических, подъемнотранспортных операций механосборочного производства.	
2.	ПК-8	Способен разрабатывать технологическ ий процесс изготовления опытных образцов машиностроите льных изделий	Тема 1 Тема 2 Тема 3 Тема 4	Разрабатывает маршрутные технологические процессы изготовления опытных образцов машиностроительных изделий; Оформляет технологическую документацию на технологические процессы изготовления опытных образцов машиностроительных изделий.	Умеет выявлять нетехнологичны е элементы конструкции опытных образцов машиностроител ьных изделий; Умеет разрабатывать предложения по изменению конструкции опытных образцов машиностроител ьных изделий с целью повышения их технологичности	Знает нормативно- технические и руководящие документы в области технологичност и; Знает основные критерии и показатели качественной и количественной оценки технологичност и конструкции опытных образцов машиностроител ьных изделий.	

3.	ПК-9	Способен разрабатывать технологическ ий процесс изготовления машиностроите льных изделий серийного (массового) производства.	Тема 4 Тема 5 Тема 6	Разрабатывает маршрутную технологию и технологические операции изготовления изделий серийного (массового) производства; Оформляет технологическую документацию на технологические процессы изготовления изделий серийного (массового) производства.	Умеет выявлять основные технологические задачи, решаемые при разработке технологических процессов изготовления машиностроитель ных изделий серийного (массового) производства; Умеет выбирать схемы базирования и закрепления заготовок машиностроитель ных деталей серийного (массового) производства.	Знает порядок согласования и утверждения технологической и конструкторской документации; Знает основные методы, способы и средства контроля технических требований, предъявляемых к машиностроитель ным изделиям.
----	------	--	----------------------------	---	---	---

2.Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

T.C.	11	5	TC.
Код	Инструменты,	Этапы и показатель	Критерии оценивания компетенции
компетенции	оценивающие	оценивания	на различных этапах формирования
	сформированность	компетенции	и шкалы оценивания
ПК-3	компетенции Выступление с	А) полностью	1. Проводится в форме выступления с
ПК-3	докладом	сформирована	докладом и презентацией
ПК-8	докладом	(компетенция освоена	2.Время, отведенное на процедуру – 10-
11119		на высоком уровне) – 5	2. Время, отведенное на процедуру – 10-
		баллов	Неявка — 0.
		Б) частично	Критерии оценки:
		сформирована:	1.Соответствие доклада заявленной
		• компетенция освоена	тематике (0-5 баллов).
		на продвинутом уровне	Максимальная сумма баллов – 5
		— 4 балла;	баллов.
		• компетенция освоена	Результаты оценочной процедуры
		на базовом уровне – 3	представляются обучающимся в срок
		балла;	не позднее 1 недели после проведения
		В) не сформирована	процедуры – для текущего контроля.
		(компетенция не	Оценка проставляется в электронный
		сформирована) – 2 и	журнал.
		менее баллов	
ПК-3	Решение задачи –	А) полностью	Проводится в письменной форме
ПК-8	анализ среды	сформирована	Критерии оценки:
ПК-9	разработки для	(компетенция освоена	1. Задание сделано (5 баллов).
	автоматизированного	на высоком уровне) – 5-	2. Задание сделано с небольшой
	проектирования	6 баллов.	ошибкой (4 балла).
	элементов изделий	Б) частично	3. Задание выполнено не до конца (3
		сформирована:	балла).
		• компетенция освоена	4. Задание не выполнено (2 балла).
		на продвинутом уровне	5.Оригинальность подхода к
		– 4 балла;	выполнению задания, использование
		• компетенция освоена	дополнительных средств
		на базовом уровне – 3	моделирования (+1 балл к 5 баллам).
		балла; В) не сформирована	Максимальная сумма баллов – 6 баллов.
		(компетенция не	оаплов. Результаты оценочной процедуры
		сформирована) – 2 и	представляются обучающимся в срок
		менее баллов	не позднее 1 недели после проведения
		WEITER OWING	процедуры – для текущего контроля.
			Оценка проставляется в электронный
			журнал.
			журпал.

ПК-3 ПК-8 ПК-9	Решение типовых задач	А) полностью сформирована (компетенция освоена на высоком уровне) – 5-6 баллов. Б) частично сформирована: • компетенция освоена на продвинутом уровне – 4 балла; • компетенция освоена на базовом уровне – 3 балла; В) не сформирована (компетенция не сформирована) – 2 и менее баллов	Проводится письменно с использованием технических средств для расчета и моделирования. Время, отведенное на процедуру – 10-15 мин. Неявка – 0. Критерии оценки: 1. Задача решена (5 баллов). 2. Задача решена с ошибкой (4 балла). 3. Решение задачи не закончено (3 балла). 4. Задача не решена (2 балла). 5. Оригинальность подхода к решению задачи (+1 балл к 5 баллам). Максимальная сумма баллов - 6 баллов. Результаты оценочной процедуры представляются обучающимся в срок не позднее 1 недели после проведения процедуры — для текущего контроля. Оценка проставляется в электронный журнал.
----------------------	--------------------------	---	--

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Тематика задач

- 1. Математическое модельное представление элементов технических систем и технологических процессов механической обработки и сборки.
- 2. Компьютерное модельное представление элементов технических систем и технологических процессов механической обработки и сборки.
- 3. Создание трехмерной модели на основе анализа данных двухмерного чертежа.
- 4. Моделирование узлов и агрегатов машиностроительного оборудования и технологической оснастки.
- 5. Разработка визуальной инструкции по осуществлению технологического процесса.

Тематика докладов

- 1. Использование CAD-систем для автоматизированного моделирования изделий технических систем.
- 2. Использование САЕ-систем для моделирования технологических процессов.
- 3. Использование САМ-систем для моделирования технологических процессов.
- 4. Использование PLM-систем для моделирования технологических процессов.
- 5. Использование специализированных расчетных пакетов для анализа и обработки многомерных данных о технологических процессах.

Тематика контрольных работ

- 1) Технологический процесс изготовления детали.
- 2) Расчет и выбор заготовок, в том числе заготовок из проката, поковок, штамповок, литья, а также комбинированных заготовок, полученных сваркой, прессованием.
- 3) Моделирование маршрутной технологии, выбор способов обработки и соответствующего технологического оборудования, типов приспособлений.
- 4) Моделирование операций и переходов, определение последовательности переходов внутри операций, расчет припусков на обработку деталей.
- 5) Определение режимов резания, проверка требуемой и наличной мощности, оптимизация режимов по критерию максимума производительности либо минимума себестоимости.
- 6) Техническое нормирование переходов, операций и технологического процесса в целом, включая определение основного, вспомогательного и штучного технологического времени.
- 7) Оформление технологической документации согласно требованиям действующих стандартов и вывод этой документации в читабельной форме на печать или видеотерминалы.
- 8) Создание и сопровождение технологической информационной базы технологического оборудования, выполнение операций ввода и адресации данных, просмотр и корректировка этой информационной базы, выполнение ряда сервисных функций.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Формой контроля знаний по дисциплине являются две текущие аттестации в виде тестов и итоговая аттестация в виде экзамена в письменной форме.

Неделя текущег о контрол я	Вид оценочного средства	Код компетенций, оценивающи й знания, умения, навыки	Содержание оценочного средства	Требования к выполнению	Срок сдачи (неделя семестра)	Критерии оценки по содержанию и качеству с указанием баллов
Проводи тся в сроки, установл енные графико м учебного процесса	Тестирование (1)	ПК-3 ПК-8 ПК-9	25 вопросов	Компьютерное тестирование. Время, отведенное на процедуру – 30 минут.	Результаты тестирован ия предоставл яются в день проведения процедуры	Критерии оценки определяются процентным соотношением. Не явка – 0. Удовлетворительно – от 51% правильных ответов. Хорошо – от 61%. Отлично – от 81%.

Проводи тся в сроки, установл енные графико м учебного процесса	Тестирование (2)	ПК-3 ПК-8 ПК-9	25 вопросов	Компьютерное тестирование. Время, отведенное на процедуру – 30 минут.	Результаты тестирован ия предоставл яются в день проведения процедуры	Критерии оценки определяются процентным соотношением. Не явка — 0. Удовлетворительно — от 51% правильных ответов. Хорошо — от 61%. Отлично — от 81%.
Проводи тся в сроки, установл енные графико м учебного процесса	Экзамен	ПК-3 ПК-9 ПК-9	2 вопроса, 1 практическое задание	Экзамен проводится в письменной форме, путем ответа на вопросы и решения практического задания. Время, отведенное на процедуру – 20-25 мин.	Результаты предоставл яются в день проведения процедуры	Критерии оценки: «Отлично»: знание основных понятий предмета; умение использовать и применять полученные знания на практических занятиях; знание основных научных теорий, изучаемых предметов; ответ на вопросы билета. «Хорошо»: знание основных понятий предмета; умение использовать и применять полученные знания на практических занятиях; знание основных понятий предмета; умение использовать и применять полученные знания на практических занание основных научных теорий, изучаемых предметов; ответы на вопросы билета • с ошибкой решено практическое задание «Удовлетворительно»:

			«Неудовлетвори-
			тельно»:
			• демонстрирует
			частичные знания
			по темам
			дисциплин;
			• незнание
			основных понятий
			предмета;
			• неумение
			использовать и
			применять
			полученные знания
			на практике;
			• не работал на
			практических
			занятиях;
			• не отвечает на
			вопросы.

Итоговое начисление баллов по дисциплине осуществляется в соответствии с разработанной и внедренной балльно-рейтинговой системой контроля и оценивания уровня знаний и внеучебной созидательной активности обучающихся, согласно приказу «О внедрении новой балльно-рейтинговой системы контроля и оценивания уровня знаний и внеучебной созидательной активности обучающихся» № 01-04/428 от 25 сентября 2020 г

4.1. Типовые задания на тестирование

Тесты используются в режиме контроля. По форме заданий выбраны закрытые тесты (с выборочным ответом). Каждому вопросу соответствует один вариант ответа. Ниже приведен примерный перечень тестов.

1. Что такое этап реализации?

- построение выводов по данным, полученным путем имитации;
- теоретическое применение результатов программирования;
- практическое применение модели и результатов моделирования.

2. Для чего служит прикладное программное обеспечение?

- планирования и организации вычислительного процесса в ЭВМ;
- реализация алгоритмов управления объектом;
- планирования и организации алгоритмов управления объектом.

3. Тождественная декомпозиция – это операция, в результате которой...

- любая система превращается в саму себя;
- средства декомпозиции тождественны;
- система тождественна.

4. Расчлененная система – это...

- система, для которой существуют средства программирования;
- система, разделенная на подсистемы;
- система, для которой существуют средства декомпозиции.

5. На что не ориентируются при выборе системы управления, состоящей из нескольких элементов?

- на быстродействие и надежность;
- на определенное число элементов;
- на функциональную полноту.

6. Что понимается под программным обеспечением?

- соответствующим образом организованный набор программ и данных;
- набор специальных программ для работы САПР;
- набор специальных программ для моделирования.

7. Параллельная коррекция системы управления позволяет...

- обеспечить введение интегралов и производных от сигналов ошибки;
- осуществить интегральные законы регулирования;
- скорректировать АЧХ системы.

8. Модульность структуры состоит

- в построении модулей по иерархии;
- на принципе вложенности с вертикальным управлением;
- в разбиении программного массива на модули по функциональному признаку.

9. Что понимают под синтезом структуры АСУ?

- процесс исследования, определяющий место эффективного элемента, как в физическом, так и техническом смысле;
- процесс перебора вариантов построения взаимосвязей элементов по заданным критериям и эффективности АСУ в целом;
- процесс реализации процедур и программных комплексов для работы АСУ.

10. Результаты имитационного моделирования...

- носят случайный характер, отражают лишь случайные сочетания действующих факторов, складывающихся в процессе моделирования;
- являются неточными и требуют тщательного анализа.
- являются источником информации для построения реального объекта.

11. Структурное подразделение систем осуществляется...

- по правилам моделирования;
- по правилам разбиения;
- по правилам классификации.

12. Какими могут быть средства декомпозиции?

- имитационными;
- материальными и абстрактными;
- реальными и нереальными.

13. Что понимают под классом?

- совокупность объектов, обладающих некоторыми признаками общности;
- последовательное разбиение подсистем в систему;
- последовательное соединение подсистем в систему.

14. Как еще иногда называют имитационное моделирование?

- методом реального моделирования;
- методом машинного эксперимента;
- методом статистического моделирования.

15. Чему при проектировании систем управления уделяется большое внимание?

- сопряжению чувствительного элемента системы с ее вычислительными средствами;
- быстродействию и надежности;
- массогабаритным показателям и мощности.

16. За счет чего достигается подобие физического реального явления и модели?

- за счет соответствия физического реального явления и модели;
- за счет равенства значений критериев подобности;
- за счет равенства экспериментальных данных с теоретическими подобными.

17. Для чего производится коррекция системы управления?

- для обеспечения заданных показателей качества процесса управления;
- для увеличения производительности системы;
- для управления объектом по определенному закону.

18. Что осуществляется на этапе интерпретации результатов?

- процесс имитации с получением необходимых данных;
- практическое применение модели и результатов моделирования;
- построение выводов по данным, полученным путем имитации.

19. Из чего состоит программное обеспечение систем управления?

- из системного и прикладного программного обеспечения;
- из системного и информационного программного обеспечения;
- из математического и прикладного программного обеспечения.

20. На чем основано процедурное программирование?

- на применении универсальных модулей;
- на применении унифицированных процедур;
- на применении унифицированных сложных программ, которые объединяются по иерархическому принципу.

21. Что понимают под структурой АСУ?

- организованную совокупность ее элементов;
- совокупность процедур программных комплексов для реализации АСУ;
- взаимосвязь, определяющую место элемента, как в физическом, так и в техническом смысле.

22. Что осуществляется на этапе подготовки данных?

- описание модели на языке, приемлемом для используемой ЭВМ;
- определение границ характеристик системы, ограничений и измерителей показателей эффективности;
- происходит отбор данных, необходимых для построения модели, и представлении их в соответствующей форме.

23. Если неизменяемая часть системы содержит слабо демпфированные или консервативные звенья, то могут быть использованы корректирующие устройства, создающие...

- отрицательный фазовый сдвиг без изменения амплитудной характеристики;
- изменение амплитудной характеристики;
- опережение по фазе.

24. Последовательная коррекция системы управления позволяет...

- ввести в закон управления составляющие;
- скорректировать АЧХ системы;
- осуществить интегральные законы регулирования.

25. Для чего служит системное программное обеспечение?

- для реализации алгоритмов организации вычислительного процесса в ЭВМ;
- для планирования и организации вычислительного процесса в ЭВМ;
- для реализации алгоритмов управления объектом.

26. При математическом моделировании в качестве объекта моделирования выступают...

- графики переходного процесса, описывающие объект по уравнениям;
- исходные уравнения, представляющие математическую модель объекта;
- процессы, протекающие в математической модели.

27. Что осуществляется на этапе экспериментирование?

- построение выводов по данным, полученным путем имитации;
- практическое применение модели и результатов моделирования;
- процесс имитации с получением необходимых данных.

28. При проектировании систем управления решающее значение имеет...

- массогабаритные показатели и мощность;
- рациональный выбор чувствительных элементов или датчиков этих систем;
- результат математического моделирования этих систем.

29. Что такое классификация систем автоматизированного проектирования?

- разбиение некоторой совокупности объекта на классы по наиболее существенным признакам;
- разбиение объектов на классы;
- деление автоматических систем на классы.

30. Что такое физическое моделирование?

- метод экспериментального изучения различных физических явлений, основанный на математических моделях;
- метод экспериментального изучения различных физических явлений, основанный на их физическом подобии;
- метод математического изучения различных физических явлений, основанный на их математическом подобии.

4.2. Типовые вопросы, выносимые на экзамен

- 1. Постановка задачи автоматизации моделирования технологических процессов.
- 2. Системный подход к моделированию технологических процессов.
- 3. Структуризация процесса моделирования технологических процессов.
- 4. Типизация и унификация проектных решений и средств моделирования технологических процессов.
- 5. Классификация САПР. Знакомство с интерфейсом САПР Solid Works и построение первой детали.
- 6. Классификация технических средств автоматизации и управления, участвующих в технологических процессах.
- 7. Технические, программно-технические и общесистемные средства автоматизации.
- 8. Автоматизированное проектирование исполнительных механизмов и устройств технологических процессов в среде Solid Works.
- 9. Конструкторско-технологическая документация на исполнительные механизмы и устройства, участвующие в технологических процессах.
- 10. Процедуры анализа, моделирования, оптимизации проектных решений в САЕ-системах.
- 11. Функции CALS-технологий.
- 12. Функции АСУП (ЕПР-систем).
- 13. Функции SCADA-систем.
- 14. Функции систем управления документами и документооборотом.
- 15. Функциональный состав интегрированных САПР. Интерфейсы, языки, форматы межпрограммных обменов САПР. Структурный состав интегрированных САПР.
- 16. Единство методики моделирования технологических процессов. Единство структуры однотипных изделий.
- 17. Комплексность принятия решений. Общность принятия проектных решений. Принятие типовых проектных решений.
- 18. Многоуровневость (многостадийность) проектных решений. Комплексность современного производства.
- 19. Инженерно-конструкторское моделирование в специальном машиностроении.
- 20. Комплекс государственных стандартов, устанавливающих порядок разработки, оформления и обращения конструкторской документации. Распределение стандартов ЕСКД по классификационным группам (ГОСТ).
- 21. Виды изделий и конструкторской документации. Виды и комплектность конструкторских документов.
- 22. Классификация конструкторских документов. Стадии разработки конструкторской документации.
- 23. Автоматизация ведения конструкторской документации.

- 24. Законы (правила), на которых строится моделирование технологических процессов, позволяющее избежать ошибок при проектировании.
- 25. Методика моделирования технологических процессов механической обработки деталей.
- 26. Процесс моделирования технологических процессов механической обработки деталей.
- 27. Единая система технологической подготовки производства ЕСТПП. Установление системы организации и управления процессом технологической подготовки производства. Состав классификационных групп стандартов ЕСТПП.
- 28. Основные этапы моделирования технологических процессов механической обработки деталей.
- 29. Технологические схемы сборки сложных технических устройств. Схемы и ступени сборки устройств технических систем. Последовательность операций при технологическом процессе сборки.
- 30. Схемы сборки в соответствии с требованиями ЕСКД.
- 31. Отработка (проверка изделия) на точность геометрических параметров и осуществление анализа характеристик изделия при изменении некоторых его параметров в процессе сборки.
- 32. Разработка подходов к автоматизации моделирования технологических процессов сборки с применением технологий трехмерного моделирования.
- 33. Визуально-наглядные инструкции сборки.
- 34. 2D-образы. 3D-образы. Двухмерное и трехмерное моделирование.
- 35. Анализ и обработка информации в средах N-мерного моделирования при проектировании технологических процессов. 4D, 5D, 6D проектирование.
- 36. Средства технологий N-мерного моделирования.
- 37. Диаграммы Ганта.
- 38. Средства аддитивных технологий.
- 39. Анализ информационного обеспечения для процессов подготовки изделий сложных технических систем.
- 40. Роль технологий N-мерного моделирования в организации технологических процессов и управлении ими.

Итоговое начисление баллов по дисциплине осуществляется в соответствии с разработанной и внедренной балльно-рейтинговой системой контроля и оценивания уровня знаний и внеучебной созидательной активности обучающихся.

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ «МОДЕЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ»

Направление подготовки: 15.03.05 Конструкторско-технологическое

обеспечение машиностроительных производств

Направленность (профиль): Технология машиностроения

Уровень высшего образования: бакалавриат

Форма обучения: очная, заочная

Королёв 2023

Общие положения

Целью дисциплины «Моделирование технологических процессов» является изучение современных систем моделирования и оптимизации технологических процессов, используемых в производстве, подготовка студентов к практическому использованию систем автоматизированного проектирования для моделирования технологических процессов.

Основными задачами дисциплины являются:

- ознакомление студентов с современными техническими средствами САПР, автоматизированными рабочими местами, автоматизированными проектными бюро и методами их использования;
- ознакомление обучающихся с современными системами моделирования и оптимизации технологических процессов,
- обучение студентов использованию современных программных средств для моделирования технологических процессов.
- подготовка обучающихся к практическому моделированию технологических процессов.

1. Указания по проведению практических (семинарских) занятий

Практическое занятие 1

Вид практического занятия: компьютерное моделирование.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов.

Тема и основные положения темы занятия: Назначение средств проектирования и моделирования технологических процессов. Создание модели технологического процесса подготовки изделия в среде Solid Works **Продолжительность занятия** 4/1 часа.

Практическое занятие 2

Вид практического занятия: компьютерное моделирование.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов.

Тема и основные положения темы занятия: Классификация технических средств, участвующих в технологических процессах. Моделирование технологического процесса сложных сборок в среде Solid Works

Продолжительность занятия 4/1 часа.

Практическое занятие 3

Вид практического занятия: компьютерное моделирование.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов.

Тема и основные положения темы занятия: Автоматизированное моделирование технологических процессов с помощью CAE/CAD/CAM-систем. Построение технологического процесса создания корпусов и схем датчико-преобразующей аппаратуры в среде Solid Works

Продолжительность занятия 4/1 часа.

Практическое занятие 4

Вид практического занятия: практическая работа в группах.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов.

Тема и основные положения темы занятия: Основные принципы инженерно-конструкторского моделирования технологических процессов. Анализ данных и обработка изображений в двух CAD-программах **Продолжительность занятия** 4/1 часа.

Практическое занятие 5

Вид практического занятия: практическая работа в группах.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов.

Тема и основные положения темы занятия: Технологические процессы с использованием трехмерных компьютерных моделей. Построение структур многомерных систем управления технологическим процессом. Продолжительность занятия 8/1 часа.

Практическое занятие 6

Вид практического занятия: практическая работа в группах.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов.

Тема и основные положения темы занятия: *N*-мерное моделирование технологических процессов. Построение матриц многомерных систем управления технологическими процессами. Операции с матрицами.

Продолжительность занятия 8/1 часа.

3. Указания по проведению лабораторного практикума

Лабораторный практикум учебным планом не предусмотрен.

4. Указания по проведению самостоятельной работы студентов

№ п/п	Наименование блока (раздела) дисциплины	Виды СРС
1.	Тема 1. Назначение средств проектирования и моделирования технологических процессов.	Подготовка докладов по темам: 1. Проблемы моделирования технических устройств и технологических процессов 2. Проведение предпроектного обследования при моделировании сложных технических устройств.
2.	Тема 2. Классификация технических средств, участвующих в технологических процессах	Подготовка докладов по темам: 1. Технические средства для моделирования технологических процессов 2. Агрегатирование сложных технических систем для упрощения технологического процесса при создании ракетно-космических комплексов.

3	Тема 3.	Подродовка докладов по домом:	
3	- '	Подготовка докладов по темам:	
	Автоматизированное	1. САЕ-системы, назначение, состав, характеристики	
	моделирование	2. САД-системы, назначение, состав, характеристики	
	технологических	3. САМ-системы, назначение, состав, характеристики	
	процессов с помощью		
	CAE/CAD/CAM-		
	систем		
4.	Тема 4. Основные	Подготовка рефератов по темам:	
	принципы инженерно-	1. Разработка специального математического	
	конструкторского	обеспечения для автоматизированного моделирования.	
	моделирования	2. Разработка специального алгоритмического	
	технологических	обеспечения технических систем автоматизации и	
	процессов	управления для моделирования	
5.	Тема 5.	Подготовка докладов по темам:	
	Технологические	1. Программные средства для создания трехмерных	
	процессы с	компьютерных моделей	
	использованием	2. Технологические процессы сборки в программной	
	трехмерных	среде для изделий РКТ	
	компьютерных		
	моделей		
6.	Тема 6. N-мерное	Подготовка докладов по темам:	
	моделирование	1. Проблемы технологий <i>N</i> -мерного моделирования	
	технологических	2. Технологии N-мерного моделирования в ракетно-	
	процессов	космических комплексах	

5.Указания по проведению контрольных работ для студентов очной, заочной формы обучения

5.1.Требования к структуре.

Структура контрольной работы должна способствовать раскрытию темы: иметь титульный лист, содержание, введение, основную часть, заключение, список литературы.

5.2. Требования к содержанию (основной части).

- 1. Во введении обосновывается актуальность темы, определяется цель работы, задачи и методы исследования.
- 2. При определении целей и задач исследования необходимо правильно их формулировать. Так, в качестве цели не следует употреблять глагол «сделать». Правильно будет использовать глаголы: «раскрыть», «определить», «установить», «показать», «выявить» и т.д.
- 3. Основная часть работы включает 2-4 вопроса, каждый из которых посвящается решению задач, сформулированных во введении, и заканчивается констатацией итогов.
- 4. Приветствуется иллюстрация содержания работы таблицами, графическим материалом (рисунками, схемами и т.п.).
 - 5. Необходимо давать ссылки на используемую Вами литературу.
- 6. Заключение должно содержать сделанные автором работы выводы, итоги исследования.

7. Вслед за заключением идет список литературы, который должен быть составлен в соответствии с установленными требованиями. Если в работе имеются приложения, они оформляются на отдельных листах, и должны быть соответственно пронумерованы.

5.3. Требования к оформлению.

Объём контрольной работы — 10-15 страниц формата A4, напечатанного с одной стороны текста (1,5 интервал, шрифт Times New Roman, размер 14).

6. Перечень основной и дополнительной учебной литературы Основная литература:

- 1. Берлинер Э.М., Таратынов О.В. САПР технолога машиностроителя: Учебник (Высшее образование: Бакалавриат). М.: ФОРУМ: ИНФРА-М, 2019. 336 с. (Высшее образование). ISBN 978-5-00091-043-6. Текст: электронный.
 - URL: https://znanium.com/catalog/product/987419
 - Режим доступа: по подписке.
- 2. Битюцкий В.П. Математическое обеспечение автоматизации проектирования: Учебное пособие / Битюцкий В.П., Битюцкая С.В. М.: Флинта, Изд-во Урал. ун-та, 2017. 72 с. ISBN 978-5-9765-3043-0. Текст: электронный.
 - URL: https://znanium.com/catalog/product/945851
 - Режим доступа: по подписке.
- 3. Шишов О.В. Технические средства автоматизации и управления: учебное пособие / О.В. Шишов. М.: ИНФРА-М, 2021. 396 с. + Доп. материалы [Электронный ресурс]. (Высшее образование: Бакалавриат). ISBN 978-5-16-010325-9. Текст: электронный.
 - URL: https://znanium.com/catalog/product/1157118
 - Режим доступа: по подписке.

Дополнительная литература:

- 1. Конюх В.Л. Проектирование автоматизированных систем производства: Учеб. пособие / В.Л. Конюх. М.: КУРС: НИЦ ИНФРА-М, 2015. 312 с. ISBN 978-5-905554-53-7.
 - URL: http://www.znanium.com/catalog.php?bookinfo=449810.
 - Режим доступа: по подписке.
- 2. Муромцев Д.Ю., Тюрин И.В. Математическое обеспечение САПР. М.: «Лань», 2015. 464 с. ISBN 978-5-8114-1573-1
 - URL: http://e.lanbook.com/books/element.php?pl1_id=42191
 - Режим доступа: по подписке.
- 3. Нартя В.И. Математическое обеспечение чертежа при конструировании деталей в машиностроении: Монография / Нартя В.И. Вологда:Инфра-Инженерия, 2017. 80 с. ISBN 978-5-9729-0170-8. Текст: электронный.
 - URL: https://znanium.com/catalog/product/936011
 - Режим доступа: по подписке.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Интернет-ресурсы:

университет»

	1 1 11	
1.	Российская государственная библиотека	www.rsl.ru
2.	Библиотека по естественным наукам РАН	http://www.benran.ru
3.	Всероссийский институт научной и технической информации (ВИНИТИ)	http://www.viniti.ru
4.	Государственная публичная научнотехническая библиотека	http://www.gpntb.ru
5.	Научная электронная библиотека eLIBRARY	http://www.elibrary.ru
6.	Национальный цифровой ресурс Руконт – межотраслевая электронная библиотека (ЭБС)	http://www.rucont.ru/
7.	Электронная библиотечная система «Лань»	http://e.lanbook.com/
8.	Университетская библиотека	http://www.biblioclub.ru
9.	Электронно-библиотечная система Znanium	http://znanium.ru
10.	Электронный каталог библиотеки МГОТУ «Технологический	http://unitech- mo.ru/library/resources/electronic-

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: MSOffice, Solid Works.

Информационные справочные системы:

- 1. Ресурсы информационно-образовательной среды Университета.
- 2. Рабочая программа и методическое обеспечение по дисциплине «Моделирование технологических процессов».

catalogue-fta