Федеральное государственное бюджетное образовательное учреждение высшего образования «ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ ДВАЖДЫ ГЕРОЯ СОВЕТСКОГО СОЮЗА, ЛЕТЧИКА-КОСМОНАВТА А.А. ЛЕОНОВА»

		«УТВЕРЖДАЮ»
		И.о. проректора
		А.В. Троицкий
«	>>	2023 г.

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ

КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ПНЕВМОГИДРАВЛИЧЕСКИЕ СИСТЕМЫ»

Специальность: 24.05.01 Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов

Специализация №21: Производство и технологическая отработка изделий ракетно-космической техники

Уровень высшего образования: специалитет

Квалификация (степень) выпускника: инженер

Форма обучения: очная, очно-заочная

основной программа является составной частью Рабочая проходит образовательной программы И профессиональной основной работодателей В составе рецензирование со стороны профессиональной образовательной программы. Рабочая программа актуализируется и корректируется ежегодно.

Автор: д.т.н., с.н.с. Бершадский В.А. Рабочая программа дисциплины: «Пневмогидравлические системы» — Королев МО: «Технологический университет», 2023.

Рецензент: д.т.н. Лобанов И.Е.

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по специальности 24.05.01 «Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов» и Учебного плана, утвержденного Ученым советом Университета.

Протокол № 9 от 11.04.2023 г.

Рабочая программа рассмотрена и одобрена на заседании кафедры:

Заведующий кафедрой (ФИО, ученая степень, звание, подпись)	Мороз А.П. д.т.н., с.н.с.				
Год утверждения (переутверждения)	2023	2024	2025	2026	2027
Номер и дата протокола заседания кафедры	№ 9 от 28.03.2023г.	№ от 20r.	№ от 20г.	от 20г.	№ от 20г.

Рабочая программа согласована:

Руководитель ОПОП ВО Мороз А.П., д.т.н., с.н.с.

Рабочая программа рекомендована на заседании УМС:

Год утверждения (переутверждения)	2023	2024	2025	2026	2027
Номер и дата протокола заседания УМС	№ 5 от 11.04.2023г.	№ от 20г	№ от 20г.	№ от 20г.	№ от 20г.

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП

Целью изучения дисциплины «**Пневмогидравлические системы**» является формирование знаний об устройстве и принципе действий пневмогидравлических систем двигательных установок, а так же приобретение способности по их разработке. Изучение этой дисциплины позволит выпускникам успешно решать задачи в профессиональной деятельности, связанные с созданием и эксплуатацией двигательных установок ракетно-космических систем.

Процесс изучения дисциплины направлен на дальнейшее формирование и усиление следующих компетенций:

Общепрофессиональные компетенции (ОПК):

- **ОПК-1.** Способность применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования для решения инженерных задач профессиональной деятельности.
- **ОПК-4**. Способность осуществлять профессиональную деятельность с учетом экономических, экологических, социальных и других ограничений на всех этапах жизненного цикла технических объектов авиационной и ракетнокосмической техники.
- **ОПК-5.** Способность разрабатывать физические и математические модели исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере деятельности для решения инженерных задач.

Профессиональные компетенции (ПК):

- **ПК-1.** Способность проводить теоретические и экспериментальные исследования в области создания новых образцов космической техники в соответствии с тактико-техническими характеристиками и техническим заданием.
- **ПК-2.** Способность проектировать космические аппараты, космические системы и их составные части;

Основными задачами изучения дисциплины являются:

- ознакомление с видами схемного и конструктивного исполнения пневмогидравлических систем и их элементов;
- ознакомление с теплофизическими принципами, используемыми для эффективного функционирования систем;
- освоение способов расчётного определения основных гидравлических и энергетических характеристик элементов систем;

- освоение методов увязки и регулирования параметров основных элементов систем для успешного функционирования двигательной установки.

Показатель освоения компетенции отражают следующие индикаторы: Трудовые действия:

- Владеет навыками применения современных информационных технологий и программных средств, в том числе отечественного производства, при решении задач профессиональной деятельности.
- Владеет навыками моделирования и проектирования процессов, для решения инженерных задач.
- Может формировать рекомендации и заключения по использованию результатов теоретических и экспериментальных исследований космических аппаратов, космических систем и их составных частей.

Необходимые умения:

- Применять на практике математические и физические модели, методы и средства проектирования и автоматизации инженерных задач.
- Выполнять расчеты с использованием специализированного программного обеспечения.
- Проводить анализ вариантов технических решений при разработке проектов космических аппаратов, космических систем и их составных частей.
- Анализировать перспективы развития как ракетно-космической техники в целом, так и ее отдельных видов для проработки технических заданий.

Необходимые знания:

- Об особенностях инженерно-технического подхода к решению профессиональных проблем и систем автоматизированного проектирования.
- О единой системе конструкторской документации и основах метрологии, стандартизации и сертификации.
- Об особенностях инженерного синтеза сложных систем и алгоритмов, применяемых в технике для их функционирования.

2. Место дисциплины (модуля) в структуре ОПОП ВО

Дисциплина «Пневмогидравлические системы» относится к базовой части блока 1 основной профессиональной образовательной программы подготовки по специальности 24.05.01 «Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов». Она базируется на дисциплинах: «Физика», «Химия», «Механика жидкости и газа», «Термодинамика и теплопередача» и ранее изученных студентами дисциплинах, позволивших частично приобрести необходимые компетенции.

Знания и компетенции, получаемые при освоении дисциплины «Пневмогидравлические системы», являются базовыми при изучении дисциплин: «Основы теории полета КА и баллистики ракет», «Ракетные двигатели», «Математические модели функционирования ракетно-космических систем и комплексов», «Расчет, конструкция и проектирование ракетных двигателей», «Экспериментальная отработка ракетной техники», а также ряда профессиональных дисциплин специальности и выполнения выпускной квалификационной работы специалиста.

3. Объем дисциплины (модуля) и виды учебной работы

Общая трудоемкость дисциплины для студентов составляет 5 зачетных единиц, 180 часов. При очной форме обучения дисциплина реализуется на 4-ом курсе в 7-ом семестре кафедрой «Техники и технологии».

При очно-заочной форме обучения дисциплина реализуется на 4-ом курсе в 8-ом семестре кафедрой «Техники и технологии».

Таблица 1

Виды занятий	Всего	Семестр	Семестр	Семестр	Семестр
0.5	часов	7	8	•••	•••
Общая трудоемкость	180	180			
ОЧ	НАЯ ФОРМ	А ОБУЧЕІ	RИН		
Аудиторные занятия	64	64			
Лекции (Л)	32	32			
Практические занятия (ПЗ)	32	32			
Лабораторные работы (ЛР)					
Практическая подготовка					
Самостоятельная работа	116	116			
Курсовые работы (проекты)					
Расчетно-графические работы					
Контрольная работа	+	+			
Текущий контроль знаний	Тест	+			
Вид итогового контроля	Экзамен	Экзамен			
	/зачет				
ОЧНО-3	Ф КАНРОА	ОРМА ОБ	УЧЕНИЯ		
Аудиторные занятия	32		32		
Лекции (Л)	16		16		
Практические занятия (ПЗ)	16		16		
Лабораторные работы (ЛР)					
Практическая подготовка					
Самостоятельная работа	148		148		

Курсовые работы (проекты)			
Расчетно-графические работы			
Контрольная работа	+	+	
Текущий контроль	Тест		
Вид итогового контроля	Экзамен	Экзамен	
	/зачет		

4. Содержание дисциплины (модуля) 4.1.Разделы дисциплины и виды занятий

Наименования разделов, виды занятий и коды компетенций по дисциплине приведены в таблице 2. Продолжительность занятий студентов очной и очно-заочной форм обучения указаны в столбцах таблицы 2 виде дроби (очная/очно-заочная).

Таблица 2

Наименование разделов	Лекции, часы	Практ. занятия, часы	Занятия в интер- акт. форме, часы	Практи- ческая подготов- ка, часы	Код компетенций
Тема. 1. Состав и назначение пневмогидравлических систем и агрегатов двигательной установки	2/1	2/1	2/1		ОПК-1,ОПК-4 ОПК-5,ПК-1, ПК-2
Тема 2. Топливные баки и система заправки баков	2/1	2/1	2/1		ОПК-1,ОПК-4 ОПК-5,ПК-1, ПК-2
Тема 3. Виды устройства и особенности функционирования систем топливоподачи	4/2	4/2	2/1		ОПК-1,ОПК-4 ОПК-5,ПК-1, ПК-2
Тема 4. Особенности устройства и работы турбонасосных агрегатов ЖРД	4/1	4/1	2/1		ОПК-1,ОПК-4 ОПК-5,ПК-1, ПК-2
Тема 5. Основные параметры и характеристики насосов ТНА	4/1	4/2	2/1		ОПК-1,ОПК-4 ОПК-5,ПК-1, ПК-2
Тема 6. Основные параметры и характеристики турбин ТНА	2/1	2/2	2/1		ОПК-1,ОПК-4 ОПК-5,ПК-1, ПК-2
Тема. 7. Совместная работа тур- бины и насосов ТНА	8/2	8/4	2/1		ОПК-1,ОПК-4 ОПК-5,ПК-1, ПК-2

Тема. 8. Системы наддува топливных баков и эффективность их работы	4/2	4/2	2/1	ОПК-1,ОПК-4 ОПК-5,ПК-1, ПК-2
Тема 9. Особенности управления функционированием топливных систем и агрегатов двигательной установки	2/1	2/1	-	ОПК-1,ОПК-4 ОПК-5,ПК-1, ПК-2
Итого:	32/12	32/16	16/8	

4.2. Содержание тем дисциплины

- **Тема 1 -** Состав и назначение пневмогидравлических систем и агрегатов двигательной установки: назначение и основные характеристики двигательной установки; виды, назначение агрегатов пневмогидравлических систем ДУ, состав и особенности их функционирования.
- **Тема 2** Топливные баки и система заправки баков: конструктивное исполнение и потребный объём топливных баков; процесс заправки компонентами топлива и обеспечение необходимых эксплуатационных характеристик топливных баков в полёте.
- **Тема 3** Виды и особенности функционирования систем топливоподачи в зависимости от способов: создания давления КТ; использования рабочего тела после турбины ТНА; получения рабочего тела на входе в турбину ТНА. Основные преимущества замкнутой схемы подачи топлива в камеру двигателя.
- **Тема 4** Особенности устройства и работы турбонасосных агрегатов ЖРД: устройство и компоновка ТНА; виды и особенности работы насосов ТНА; виды и особенности работы турбин ТНА; нагрузки, действующие на элементы ТНА; особенности действия осевой силы и её компенсация.
- **Тема 5 -** Основные параметры и характеристики насосов: параметры насосов; энергетические и кавитационные характеристики насосов; совместная работа насосов и пневмогидравлической системы.
- **Тема 6 -** Основные параметры и характеристики турбин: параметры турбин; энергетические характеристики турбин.
- **Тема 7-** Совместная работа турбин и насосов: особенности совместной работы на запуске ТНА; энергетическая увязка параметров турбин и насосов; влияние давления в камере двигателя на параметры системы топливоподачи; влияние рода рабочего тела на параметров системы топливоподачи.
- **Тема 8 -** Системы наддува топливных баков и эффективность их работы: принципы реализации рабочего наддува топливных баков; варианты схем си-

стем наддува; характер изменений давления и температуры в баке, эффективность процесса наддува.

Тема 9 - Особенности управления функционированием систем и агрегатов: виды управления и регулирования агрегатами пневмогидросистем; регулирование подачи компонентов топлива в камеру двигателя; устройство основных исполнительных элементы системы топливоподачи; способы управления параметрами траектории движения в полёте.

5. Перечень учебно-методического обеспечения для самостоятельной работы по дисциплине (модулю):

- 1. Лекции, подготовленные преподавателем в соответствии с темами 1-9, которые указаны в разделе 4.2.
- 2. Текущие задания преподавателя на подготовку к практическим занятиям по темам 1-9.
- 3. Методические указания для студентов по освоению дисциплины «Пневмогидравлические системы», приведенные в «Приложении 2» к настоящей рабочей программе

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Структура фонда оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Пневмогидравлические системы» приведена в «Приложении 1» к настоящей программе.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

Основная литература:

- 1. Добровольский М.В. Жидкостные ракетные двигатели. Основы проектирования: учебник // М: Изд-во МГТУ им. Н.Э.Баумана. 2016. 406 с.
- 2. Агрегаты регулирования жидкостных ракетных двигательных установок / Под редакцией Д.А. Ягодникова // М: Изд-во МГТУ им. Н.Э.Баумана. 2015. 223c.
- 3. Беляев Е.Н., Воробьёв А.Г. Энергетическая увязка параметров ЖРД: учебное пособие // М: Изд-во МАИ.2016. 66 с.
- 4. Гуртовой А.А., Иванов А.В., Скоромохов Г.И. Расчёт и конструирование агрегатов ЖРД: учебное пособие// Воронеж: Изд-во ВГТУ.2016. 167 с.

Дополнительная литература:

1. Козлов А.А., Новиков В.Н., Соловьёв Е.В. Системы питания и управления жидкостных ракетных двигательных установок. // М: Машиностроение,1988. 352 с.

- 2. Овсяников Б.В., Боровский Б.И. Теория и расчёт агрегатов питания ЖРД. // М: Машиностроение, 1986. 376 с.
- 3. Беляев Н.М. Расчёт пневмогидравлических систем ракет. // М: Машиностроение, 1983. 219 с.
- 4. Пневмогидравлические системы двигательных установок с жидкостными ракетными двигателями / Под редакцией В.Н.Челомея // М: Изд-во Машиностроение, 1978. 240 с.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Интернет-ресурсы:

http://www.biblioclub.ru/

http://www.rucont.ru/

http://www.znanium.com/

http://www.book.ru

http://e.lanbook.com/

http://www.biblio-online.ru

Ebrary

http://ies.unitech-mo.ru/

http://unitech-mo.ru/

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Методические указания для обучающихся по освоению дисциплины приведены в Приложении 2 к настоящей рабочей программе.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: MSOffice, RAMUS. Информационные справочные системы:

- 1. Информационные ресурсы образовательной среды «МГОТУ».
- 2. Информационно-справочные системы «Консультант+», «Гарант».
- 3. Рабочая программа и методическое обеспечение по дисциплине «Пневмогидравлические системы».

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лекционные занятия. Аудитория оснащена:

- презентационной техникой (проектор, экран);
- -комплект электронных презентаций/слайдов.

Практические занятия. Аудитория оснащена:

- компьютерным классом с проектором для интерактивного обучения, оборудованным современными лицензионными программно-техническими средствами: операционная система не ниже Windows XP; офисные программы MSOffice 7, AIIFusion Process Modeler, RAMUS, рабочее место преподавателя, оснащенное компьютером с доступом в Интернет;
- рабочие места студентов, оснащенные компьютерами с доступом в Интернет.

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИЙ МАШИНОСТРОЕНИЯ

КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) «ПНЕВМОГИДРАВЛИЧЕСКИЕ СИСТЕМЫ»

Направление подготовки: 24.05.01 «Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов»

Специализация: №21 «Производство и технологическая отработка изделий ракетно-космической техники»

Уровень высшего образования: специалитет

Квалификация (степень) выпускника: инженер

Форма обучения: очная, очно-заочная

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

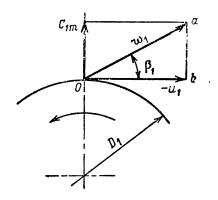
Таблица 1

Интене	1	Тол	Danzier en		
Индекс компетенции	Содержание компетенций	Темы дис- циплины, обеспечи- вающие формиро-	Результаты изучения дисциплины, обеспечи вающие формирование компетенций обучающегося — Тругория — Наобходи — Наобходи		
		вание ком- петенций	Трудовые действия	Необходи- мые умения	Необходи- мые знания
ОПК-1	Способность применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования для решения инженерных задач профессиональной деятельности.	Темы 1-9	Владеет навыками применения современных информационных технологий и программных средств, в том числе отечественного производства Владеет навыками моделирования и проектирования и проектирования и проектирования процессов, для решения инженерных задач. Может формировать рекомендации и заключения по использованию результатов теоретических и экспериментальных исследований космических аппаратов, космических систем и их составных частей.	Применять на практике математические и физические и физические модели, методы и средства проектирования и автоматизации инженерных задач. Выполнять расчеты с использованием специализированного программного обеспечения. Проводить анализ вариантов технических решений при разработке проектов космических аппаратов, космических систем и их составных частей.	Об особенностях инженерно- технического подхода к решению профессиональных проблем и систем автоматизированного проектирования. О единой системе конструкторской документации и основах метрологии, стандартизации и сертификации. Об особенностях инженерного синтеза сложных систем и алгоритмов, применяемых в технике для их функционирования.
ОПК-4	Способность осуществлять профессиональную деятельность с учетом экономических, экологических, социальных и других ограничений на всех этапах	Темы 1-9			

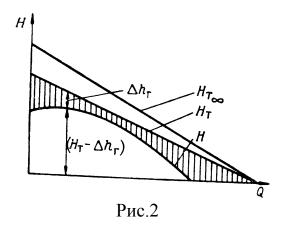
	жизненного цикла техниче-			
	ских объектов авиационной			
	и ракетно-космической тех-			
	ники.			
ОПК-5	Способность разра-	Темы 1-9		
	батывать физические и ма-			
	тематические модели ис-			
	следуемых процессов, явле-			
	ний и объектов, относящих-			
	ся к профессиональной			
	сфере деятельности для			
	решения инженерных задач.			
TILC 1		Темы 1-9		
ПК -1	Способность прово-	1емы 1-9		
	дить теоретические и экс-			
	периментальные исследова-			
	ния в области создания но-			
	вых образцов космической			
	техники в соответствии с			
	тактико-техническими ха-			
	рактеристиками и техниче-			
	ским заданием.			
ПК-2	Способность проек-	Темы 1-9		
1111\-2	тировать космические ап-	1 CMBi 1		
	-			
	параты, космические систе-			
	мы и их составные части.			

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Код компе- тенции	Инструменты, оценивающие сформированность компетенции	Этапы и показатель оценивания компетенции	Критерии оценивания компетенции на различных этапах формирования и шкалы оценивания
ОПК-1, ОПК-4, ОПК-5, ПК -1 ПК-2	Тестирование	А) Полностью сформирована, освоена на высоком уровне: 90% правильных ответов. Б) Частично сформирована, освоена на продвинутом уровне: 70% правильных ответов; освоена на базовом уровне: от 51% правильных ответов. В) Не сформирована: менее 50% правильных ответов	Проводится письменно и в виде доклада. Время, отведенное на процедуру - 30 минут, максимальная оценка 5 баллов. Критерии оценки: - неудовлетворительно менее 50% правильных ответов; - удовлетворительно от 51 % правильных ответов; - хорошо от 70% правильных ответов; - отлично от 90% правильных ответов.

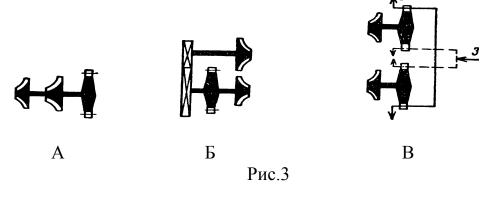

		А) Полностью сформиро-	Проводится в письменной
	Контрольная	вана, освоена на высоком	форме или в форме доклада.
ОПК-1,		уровне: 90% правильных	Выбор оптимального метода
ОПК-4,		ответов.	решения задачи (1 балл).
<u> </u>		Б) Частично сформирова-	Умение применить выбранный
ОПК-5,		на, освоена на продвину-	метод (1 балл).
ПК -1		том уровне: 70% пра-	Логический ход решения пра-
ПК-2		вильных ответов; освоена	вильный, но имеются арифме-
		на базовом уровне: от	тические ошибки в расчетах (1
		51% правильных ответов.	балл).
		В) Не сформирована:	Решение задачи и получение
		менее 50% правильных	правильного результата (2 бал-
		ответов	ла).
			Задача не решена вообще (0
			баллов).
			Максимальная оценка – 5 бал-
			лов.

3. Типовые контрольные задания или иные материалы, необходимые для оценки, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы


3.1 Примеры вопросов, типичных для проведения тестирования:

- 1. Какой из перечисленных параметров определяет характеристическую скорость полёта:
 - -тяга двигателя;
 - расход топлива;
 - скорость истечения продуктов сгорания.
- 2. Какой элемент ПГС обеспечивает достижения требуемых энергетических характеристик ракетной ступени:
 - -топливные баки;
 - система подачи топлива;
 - камера двигателя.
- 3. Основные преимущества замкнутой схемы двигательной установки (ДУ):
 - -надёжность;
 - экономичность;
 - безопасность.
- 4. Основной недостаток открытой схемы ДУ:
 - малая тяга;
 - малая удельная тяга;
 - малая надёжность.

- 5. Какая из схем процесса при использовании рабочего тела после турбины позволяет получить максимальную удельную тягу:
 - жидкость жидкость;
 - газ жидкость;
 - − газ − газ.
 - 6. Укажите основное преимущество насосной системы подачи топлива по сравнению с вытеснительной:
 - уменьшение веса ДУ;
 - уменьшение тяги ДУ;
 - увеличение продолжительности работы ДУ.
- 7. Укажите вид насосов наиболее применяемых в турбонасосных агрегатах:
 - осевые;
 - центробежные;
 - вихревые.
- 8. Укажите вид турбин наиболее применяемых в ТНА двигателей замкнутой схемы:
 - -осевые реактивные;
 - осевые активные;
 - центростремительные.
- 9. Какие потери энергии в насосах оказывают наибольшее влияние на изменение действительного напора по сравнению с теоретическим напором:
 - объёмные;
 - гидравлические;
 - механические.
- 10. Определите вид зависимости для расчёта действительного напора насоса от объёмного расхода:
 - $-c_{2u} \cdot u_2 c_{1u} \cdot u_1;$
 - $-\left(p_{2}-p_{1}\right) /\gamma ;$
 - i_2 i_1 .
- 11. Определите относительную скорость на входе в насос при рассмотрении плана скоростей на рис.1:
 - $-c_1;$
 - $-u_1$;
 - $-\mathbf{w}_1$.



- 12. Определите вид характеристики насоса, приведенной на рис.2:
- напорная;
- кавитационная;
- энергетическая.

- 13. Какой параметр определяет максимально допустимые обороты ТНА:
- потребный напор насоса;
- перепад давления на турбине;
- антикавитационный запас.
- 14. Какая величина коэффициента n_s позволяет определить размеры колеса быстроходного центробежного насоса:
- $-n_s = 40 80;$
- $-n_s = 80-150;$
- $-n_s = 150-300.$
- 15. Какое из значений коэффициента $C_{\kappa p}$ соответствует насосу с наилучшими антикавитационными свойствами:

 - $-C_{\kappa p} = 10^{3} 2 \cdot 10^{3};$ $-C_{\kappa p} = 2 \cdot 10^{3} 3 \cdot 10^{3};$ $-C_{\kappa p} = 3 \cdot 10^{3} 4 \cdot 10^{3}.$
- 16. Укажите схему компоновки насосов и турбин ТНА, имеющих наибольшее применение в ЖРД (рис.3):
- одновальная совместная -А;
- редукторная раздельная -Б;
- двух-вальная раздельная -В.

- 17. Определите максимально допустимую величину температуры газа на входе в турбину ТНА для работы по схеме с дожиганием окислительного газа (ДОГГ):
 - -300 K;
 - -750 K;
 - -1100 K.
- 18. Определите формулу для расчёта располагаемой мощности турбины:
 - $-M_{\kappa}\cdot n;$

 - $m_{\Gamma} \cdot L_{\Gamma} \cdot \eta$.
- 19. Как увеличение оборотов ТНА влияет на антикавитационные качества насосов:
 - увеличивает;
 - не изменяет;
 - уменьшает.
- 20. Какая плоскость в изображении лопаточной машины называется меридиональной:
 - плоскость, перпендикулярная оси вращения;
 - плоскость, проходящая через ось вращения;
 - плоскость, содержащая векторы окружной, относительной и абсолютной скоростей.
- 21. На какие узлы наибольшее влияние оказывает действие осевых и радиальных сил при функционировании ТНА:
 - колёса насосов;
 - колёса турбины;
 - подшипниковые опоры вала.
- 22. Укажите способ регулирования расхода рабочего тела в ПГС с минимальными изменениями потребной мощности турбины:
 - применение дросселя в потоке;
 - использование закольцовки в потоке;
 - изменение оборотов насоса.
- 23. Укажите способ подачи рабочего тела для наиболее устойчивого вывода ТНА на расчётный режим по оборотам:
 - от независимого источника получения газа в составе ТНА;
 - от раскручиваемых основных насосов ТНА в газогенератор;
 - от предварительно раскручиваемых насосов БТНА в газогенератор.
- 24. Укажите применяемый способ улучшения антикавитационных свойств насоса за счёт изменения параметров рабочего тела:
 - давления;
 - температуры;
 - плотности.
- 25. При каком значении действительного соотношения количеств топлива, делённого на теоретическое соотношение, реализуется схема с подачей на турбину восстановительного газа (ДВГГ):

- $-\alpha >> 1$; $-\alpha \approx 1$;
- $\alpha \ll 1$.
- 26. Укажите основное назначение предпускового газового объёма в топливном баке ДУ:
 - контроль предварительного уровня топлива;
 - компенсация температурного расширения топлива;
 - демпфирование колебаний давления топлива при запуске.
- 27. Определите схему расположения топливных баков «О» и «Г», обеспечивающих минимальное изменение центровки ракетной ступени:
 - бак за баком, бак «О» впереди;
 - бак за баком, бак «Г» впереди;
 - − бак «Г» внутри бака «О».
- 28. Определите главное назначение системы наддува топливных баков из перечисленных ниже:
 - обеспечение бескавитационной работы топливных насосов;
 - обеспечение необходимой прочности оболочки топливных баков;
 - уменьшение потерь компонентов топлива на испарение.
- 29. Определите наиболее рациональный способ получения рабочего тела для наддува бака с криогенным топливом:
- газогенератор жидкостный или пороховой;
- использование инертного газа, хранимого в баллонах;
- испарение в теплообменнике основного компонента топлива.
- 30. Выберите из перечисленных ниже факторов тот, который способствует наиболее эффективному использованию газа наддува:
- способ подачи газа в бак;
- давление и температура газа на входе в бак;
- теплофизические характеристики газа.

3.2 Примеры контрольных заданий

Залание №1:

- 1. Определите назначение и состав двигательной установки (ДУ).
- 2. Сформулируйте основные понятия принятых условных обозначений «ПГС и АСУ».
- 3. Поясните виды и основное назначение систем и агрегатов, входящих в ПГС Π У.
- 4. Определите и охарактеризуйте состав систем и агрегатов, входящих в ПГС ДУ.
- 5. Задача. Определить тягу и удельную тягу двигательной установки при следующих исходных данных:
 - давление в камере сгорания = 60 krc/cm^2 ;
 - расход горючего (жидкого водорода) при подаче в камеру 2,3 кг/с;
 - соотношение компонентов топлива = 5,5;

- давление на выходе из сопла двигателя = 0.1 кгс/см^2 ;
- давление в окружающей среде = 0.02 кгс/см^2 ;
- диаметр сопла двигателя = 1,2 м;
- продуктом сгорания в камере является водяной пар.

Задание №2:

- 1. Конструктивное исполнение топливных баков и воспринимаемые ими нагрузки.
- 2. Виды топливных баков в зависимости от возникающих эксплуатационных нагрузок и особенностей компоновки ДУ.
- 3. Основные особенности системы заправки топливных баков и режимов проведения операций заправки КТ.
- 4. Основные факторы, определяющие требования к устройству забора КТ из баков.
- 5. Основные факторы, определяющие требования к устройству демпфирования колебаний КТ в баках.
- 6. Задача. Определить объёмы топливных баков (горючего и окислителя) ДУ с ЖРД при следующих исходных данных:
 - тяга двигателя R=20 тс в течение времени непрерывной работы $\tau=600$ c;
 - удельная тяга двигателя $I_{yд} = 355$ c;
 - компоненты топлива (КТ) кислород и керосин, имеющие соответственно температуру $T_{\text{жо}} = 90,2 \text{ K и } T_{\text{жг}} = 300 \text{ K};$
 - решение задачи осуществить с учётом гарантированных запасов, непроизводительных затрат и потерь КТ, внутрибаковых устройств и необходимого газового объёма.

Задание №3:

- 1. Перечислите основные факторы, определяющие виды применяемых систем топливоподачи.
- 2. Определите область применения, преимущества и недостатки вытеснительной и насосной систем топливоподачи.
- 3. Определите область применения, преимущества и недостатки открытой и замкнутой систем топливоподачи.
- 4. Определите область применения, преимущества и недостатки систем топливоподачи типа ДОГГ, ДВГГ, ДБГГ.
- 5. Поясните преимущества и недостатки систем топливоподачи типа жидкость-жидкость, газ-жидкость, газ-газ.
- 6. Задача. Разработать схемы пневмогидросистем двигательных установок (ДУ) следующих вариантов: 1 вар. открытая; 2вар. замкнутая с ДОГГ; 3 вар. замкнутая с ДБГГ.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Формой контроля знаний по дисциплине «Пневмогидравлические системы» являются две текущие аттестации в форме теста и контрольной, итоговый контроль осуществляется в форме экзамена.

Таблица 3

Поделен — :		I/oz 200				
Неделя те- кущего/ промежу- точного контроля	Вид оце- ночного средства	Код компетенций, оценивающий знания, умения, навыки	Содержание оценочного средства	Требования к выполнению	Срок сдачи резуль- татов	Критерии оценки по содержанию и качеству с указанием баллов
В соответствии с графиком учебного процесса	Кон- троль- ная	ОПК-1, ОПК-4, ОПК-5, ПК -1 ПК-2	Результаты выполнения контрольных заданий	Домашние задания с докладом устно в ауди-тории	На практических занятиях в аудитории	Максимальная оценка – 5 баллов. Критерии оценки: 1.Правильный выбор метода решения (1балл). 2.Умение объяснить логический ход решения (2 балла). 3.Получение правильного результата при решении (2 балла). 4.Задача не решена (0 баллов).
В соответствии с графиком учебного процесса	Тести-рование	ОПК-1, ОПК-4, ОПК-5, ПК -1 ПК-2	35 тестов для ответа на вопросы	Письменно в аудитории в течение 40 минут	На следую- щий день после проведения	Максимальная оценка – 5 баллов. Критерии оценки: -удовлетворительно - от 50% правильных ответов; - хорошо - от 70% правильных ответов; - отлично - от 90% правильных ответов.
В соответствии с графиком учебного процесса	Экзамен	ОПК-1, ОПК-4, ОПК-5, ПК -1 ПК-2	2 вопроса в каждом билете	Устно в аудитории в течение 20 минут	В день проведения	Максимальная оценка — 5 баллов. Критерии оценки: «Отлично»: знание основных понятий предмета; умение использовать и применять полученные знания на практике; работа на практических занятиях; знание основных научных теорий, изучаемых предметов; ответ на вопросы билета. «Хорошо»: •знание основных понятий предмета; •умение использовать

	W THAT COVER
	и применять получен-
	ные знания на практи-
	ке;
	•работа на практиче-
	ских занятиях;
	•знание основных
	научных теорий, изу-
	чаемых предметов;
	•ответы на вопросы
	билета
	•неправильно решено
	практическое задание
	«Удовлетворительно»:
	демонстрирует ча-
	стичные знания по
	темам дисциплин;
	незнание, неумение
	использовать и при-
	менять полученные
	знания на практике;
	не работал на практи-
	ческих занятиях; «Не-
	удовлетворительно»:
	демонстрирует ча-
	стичные знания по
	темам дисциплин; незнание основных
	понятий предмета;
	неумение использо-
	вать и применять по-
	лученные знания на
	практике;
	не работал на практи-
	ческих занятиях;
	не отвечает на вопро-
	сы.

Итоговое начисление баллов по дисциплине осуществляется в соответствии с разработанной и внедренной балльно-рейтинговой системой контроля и оценивания уровня знаний и внеучебной созидательной активности обучающихся.

5. Типовые вопросы, выносимые на экзамен

1. Определите основное назначение и состав двигательной установки (ДУ),

запишите формулы для расчёта основных характеристик ДУ. Поясните виды и основное назначение систем и агрегатов, входящих в ПГС ДУ.

2. Изобразите и поясните конструктивное исполнение топливных баков,

перечислите воспринимаемые ими нагрузки и напишите формулу для расчёта объёма топливного бака. Определите виды топливных баков в зависи-

мости от возникающих эксплуатационных нагрузок и особенностей компоновки ДУ.

3. Перечислите основные особенности системы заправки топливных баков

и режимов проведения операций заправки КТ, напишите формулу для расчёта массы топлива, заправляемого в бак. Определите требования к устройству забора КТ из баков и к устройству демпфирования колебаний КТ в баках.

- 4. Изобразите основные особенности вытеснительной и насосной схем систем топливоподачи. Определите область применения, преимущества и недостатки этих систем топливоподачи.
- 5. Изобразите основные особенности открытой и замкнутой систем топливоподачи. Определите область применения, преимущества и недостатки этих систем. Поясните основное отличие и эффективность этих схем при реализации процессов типа жидкость-жидкость, газ-жидкость, газ-газ.
- 6. Изобразите основные особенности схем систем топливоподачи типа ДОГГ, ДВГГ, ДБГГ и укажите область применения, преимущества и недостатки этих схем.
- 7. Назовите основные агрегаты ТНА и виды их исполнения. Изобразите схемы компоновок ТНА, определите их преимущества и недостатки.
- 8. Перечислите основные параметры, характеризующие работу насосов, и напишите расчётные зависимости для определения напора, мощности и КПД насоса.
- 9. Перечислите энергетические характеристики насосов, поясните их графическое изображение и особенности изменений. Напишите расчётную зависимость для коэффициента быстроходности насоса и объясните особенности его влияния на выбор вида насоса.
- 10. Изобразите графически кавитационные характеристики насосов и пояснение особенностей их изменений. Обоснуйте особенности определения частоты вращения насосов в зависимости от компоновки ТНА.
- 11. Определите понятие потребного напора насоса при работе в магистрали топливоподачи и напишите зависимость для его расчёта. Поясните влияние гидравлического сопротивления расходной магистрали и частоты вращения насоса на определение потребного напора.
- 12. Определите понятия потребная и располагаемая мощность турбины и запишите расчётные зависимости для их определения. Укажите основные параметры, определяющие располагаемую мощность турбины, и характер их влияния.
- 13. Определите, что представляют собой характеристики турбины, а также адиабатическая скорость истечения в турбине и её значение. Охарактери-

зуйте коэффициент полезного действия турбины и виды потерь, определяющих его величину. Поясните влияние параметров турбины на располагаемую мощность.

- 14. Задачи, решаемые на практике для обеспечения совместной работы турбины и насосов. Сформулируйте условия гарантированного запуска ТНА и устойчивой работы при раскрутке насосов, а также условия, определяющие требуемую продолжительность запуска ТНА.
- 15. Определите основные принципы и решаемые задачи по увязке параметров турбины и насосов. Изложите процедуру энергетической увязки параметров турбины и насосов с использованием графического способа. Определите факторы влияния давления в камере и типа газогенератора на параметры системы топливоподачи.
- 16. Определите основное назначение и принципы реализации рабочего наддува топливных баков. Обоснуйте основные факторы, влияющие на процесс наддува и величину давления в баке, и определите характер их влияния.
- 17. Расскажите о вариантах схем систем наддува и изобразите их особенности. Перечислите примеры конструктивного исполнения распылителей газа наддува и изобразите характер изменения давления и температуры в баке.
- 18. Расскажите о способе расчётного определения потребного расхода и необходимого запаса газа наддува. Сформулируйте понятие эффективности процесса наддува топливного бака и определите основные факторы, влияющие на её величину.
- 19. Определите виды регулирования и управления элементами ПГС для обеспечения нормального функционирования двигательной установки. Расскажите о применяемых способах регулирования подачи компонентов топлива в двигатель.
- 20. Определите виды и назначение исполнительных элементов систем топливоподачи. Расскажите о принципах действия отсечных клапанов и гидравлических регуляторов расхода жидких компонентов топлива, пневмоуправляющих клапанов и редукторов давления газа.
- 21. Перечислите основные проблемы и задачи, требующие специального управления элементами ПГС ДУ в условиях полёта. Поясните функционирование схемы регулирования РКС и схемы регулирования СОБ.
- 22. Поясните существо проблем, требующих специального управления элементами ПГС ДУ в условиях полёта. Поясните функционирование схемы стабилизации ЛА на траектории полёта по тангажу, рысканию и крену.

Методические указания для обучающихся по освоению дисциплины (модуля)

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИЙ МАШИНОСТРОЕНИЯ

КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ) «ПНЕВМОГИДРАВЛИЧЕСКИЕ СИСТЕМЫ»

Направление подготовки: 24.05.01 «Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов»

Специализация: №21 "Производство и технологическая отработка изделий ракетно-космической техники"

Уровень высшего образования: специалитет

Квалификация (степень) выпускника: инженер

Форма обучения: очная, очно-заочная

Королёв 2023

Общие положения

Целью изучения дисциплины «**Пневмогидравлические системы**» является формирование знаний об устройстве и принципе действий пневмогидравлических систем двигательных установок, а так же приобретение способности по их разработке. Изучение этой дисциплины позволит выпускникам успешно решать задачи в профессиональной деятельности, связанные с созданием и эксплуатацией двигательных установок ракетно-космических систем.

Основными задачами изучения дисциплины являются:

- ознакомление с видами схемного и конструктивного исполнения пневмогидравлических систем и их элементов.
- ознакомление с теплофизическими принципами, используемыми для эффективного функционирования систем.
- освоение способов расчётного определения основных гидравлических и энергетических характеристик элементов систем.
- освоение методов увязки и регулирования параметров основных элементов систем для успешного функционирования двигательной установки.

1. Указания по проведению практических (семинарских) занятий

Проведение практических занятий по предмету «Пневмогидравлические системы» обусловлено необходимостью:

- подтверждения, что студенты понимают функциональное назначение элементов пневмогидравлических систем и теплофизические принципы, обеспечивающие их работоспособность в составе двигательной установки;
- приобретения студентами навыков расчётного определения основных параметров и характеристик элементов пневмогидравлических систем.

Практические занятия по предмету «Пневмогидравлические системы» рекомендуется проводить на основе обсуждения ответов или докладов студентов, а также результатов решения практических задач по каждой из тем 1-9, названия которых приведены в таблице 2 рабочей программы.

Примеры вопросов и задач для тестирования и проведения практических занятий приведены в разделе 3 Приложения 1 к программе. При этом каждый из обучающихся должен выступить на практических занятиях не менее 2-х раз в семестре по теоретическому вопросу и решению практических задач.

3.Указания по проведению лабораторного практикума

Проведение лабораторного практикума в рабочей программе по предмету «Пневмогидравлические системы» не предусмотрено.

4. Рекомендации по организации самостоятельной работы студентов

Самостоятельная работа студентов должна быть направлена на использование научно-технической литературы для углубленного изучения предмета и систематизации знаний. В результате самостоятельной работы студенты должны приобрести навыки подготовки докладов и электронных презентаций, умение находить рациональные технические решения на основе самостоятельно подготовленных материалов. В таблице 4.1 для примера приведены виды самостоятельной работы, которые могут быть предложены студентам по предмету «Пневмогидравлические системы»

Таблица 4.1

№ п/п	Наименования тем дисциплины	Виды самостоятельной работы
1	Темы 1-9, перечисленные в разделе 4.2 рабочей программы	Подготовка ответов на теоретические вопросы и решения задач по каждой из тем 1-9 с обсуждением на практических занятиях.
2	Научно-исследовательская работа по одной из тем 1-9, перечисленных в разделе 4.2 рабочей программы	Подготовка реферата (доклада) на основе углубленного и расширенного изучения одной из тем, предложенных преподавателем, для обсуждения на кафедре или на конференции

5.1 Перечень основной и дополнительной учебной литературы

Основная литература:

- 1. Добровольский М.В. Жидкостные ракетные двигатели. Основы проектирования: учебник // М: Изд-во МГТУ им. Н.Э. Баумана. 2016.406 с.
- 2. Агрегаты регулирования жидкостных ракетных двигательных установок / Под редакцией Д.А. Ягодникова // М: Изд-во МГТУ им. Н.Э. Баумана. 2015. 223c.
- 3. Беляев Е.Н., Воробьёв А.Г. Энергетическая увязка параметров ЖРД: учебное пособие // М: Изд-во МАИ. 2016. 66 с.
- 4. Гуртовой А.А., Иванов А.В., Скоромохов Г.И. Расчёт и конструирование агрегатов ЖРД: учебное пособие// Воронеж: Изд-во ВГТУ. 2016.167 с.

Дополнительная литература:

- 1. Козлов А.А., Новиков В.Н., Соловьёв Е.В. Системы питания и управления жидкостных ракетных двигательных установок. // М: Машиностроение, 1988. 352 с.
- 2. Овсяников Б.В., Боровский Б.И. Теория и расчёт агрегатов питания ЖРД. // М: Машиностроение, 1986. 376 с.
- 3. Беляев Н.М. Расчёт пневмогидравлических систем ракет. // М: Машиностроение, 1983. 219 с.

4. Пневмогидравлические системы двигательных установок с жидкостными ракетными двигателями / Под редакцией В.Н.Челомея // М: Изд-во Машиностроение

6. Перечень ресурсов информационно-телекоммуникационной в сети «Интернет»

Интернет-ресурсы:

http://www.biblioclub.ru/

http://www.rucont.ru/

http://www.znanium.com/

http://www.book.ru

http://e.lanbook.com/

http://www.biblio-online.ru

Elibrary

http://ies.unitech-mo.ru/

http://unitech-mo.ru/

Электронные ресурсы образовательной среды «МГОТУ».

- 1. http://biblioclub.ru/index.php библиоклуб (университетсткая библиотека);
- 2. http://www.znanium.com электронно-библиотечная система Znanium.com!;
- 3. http://e.lanbook.com электронно-библиотечная система издательства «Лань»;
- 4. http://www.rucont.ru/ Национальный цифровой ресурс Руконт межотраслевая электронная библиотека (ЭБС);

7. Перечень информационных технологий, перечень программного обеспечения:

MSOffice, RAMUS.