

		«УТВЕРЖДАЮ»
		И.о. проректора
		А.В. Троицкий
«	>>	2023 г.

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ

КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА»

Специальность: 24.05.01 Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов

Специализация №21: Производство и технологическая отработка изделий

ракетно-космической техники

Уровень высшего образования: специалитет

Квалификация (степень) выпускника: инженер

Форма обучения: очная, очно-заочная

Королёв 2023 Рабочая программа является составной частью основной профессиональной образовательной программы и проходит рецензирование со стороны работодателей в составе основной профессиональной образовательной программы. Рабочая программа актуализируется и корректируется ежегодно.

Автор: д.т.н. Лобанов И.Е. Рабочая программа дисциплины: «Теоретическая механика» – Королев МО: «Технологический университет», 2023.

Рецензент: к.т.н. Сабо С.Е.

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по специальности 24.05.01 «Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов» и Учебного плана, утвержденного Ученым советом Университета.

Протокол № 9 от 11.04.2023 г.

Рабочая программа рассмотрена и одобрена на заседании кафедры:

Заведующий кафедрой (ФИО, ученая степень, звание, подпись)	Мороз А.П. д.т.н., с.н.с.				
Год утверждения (переутверждения)	2023	2024	2025	2026	2027
Номер и дата протокола заседания кафедры	№ 9 от 28.03.2023г.	№ от 20r.	№ от 20г.	№ от 20г.	№ от 20г.

Рабочая программа согласована:

Руководитель ОПОП ВО Мороз А.П., д.т.н., с.н.с.

Рабочая программа рекомендована на заседании УМС:

Год утверждения (переутверждения)	2023	2024	2025	2026	2027
Номер и дата протокола заседания УМС	№ 5 от 11.04.2023г.	№ от 20r	№ от 20r.	№ от 20г.	№ от 20г.

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО

Целью изучения дисциплины является:

- изучение общей теории о совокупности сил, приложенных к материальным телам, и об основных операциях над силами, позволяющих приводить совокупности их к наиболее простому виду, выводить условия равновесия материальных тел, находящихся под действием заданной совокупности сил, и определять реакции связей, наложенных на данное материальное тело;
- изучение способов количественного описания существующих движений материальных тел в отрыве от силовых взаимодействий их с другими телами или физическими полями, таких как орбитальные движения небесных тел, искусственных спутников Земли, колебательные движения (вибрации) в широком их диапазоне;
- изучение движения материальных тел в связи с механическими взаимодействиями между ними.

В процессе обучения обучающийся приобретает и совершенствует следующие компетенции:

Универсальные компетенции:

УК-8. Способен создавать и поддерживать в повседневной жизни и в профессиональной деятельности безопасные условия жизнедеятельности для сохранения природной среды, обеспечения устойчивого развития общества, в том числе при угрозе и возникновении чрезвычайных ситуаций и военных конфликтов;

Общепрофессиональные компетенции:

- ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования для решения инженерных задач профессиональной деятельности;
- ОПК-5. Способен разрабатывать физические и математические модели исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере деятельности для решения инженерных задач;

Задачи дисциплины: ознакомление студентов с основными понятиями и законами механики (статики, кинематики, динамики) и вытекающими из этих законов методами изучения равновесия и движения материальной точки, твердого тела и механической системы:

- изучение механической компоненты современной естественнонаучной картины мира, понятий и законов теоретической механики;
- дать студенту первоначальные представления о постановке инженерных задач, составлении математических и динамических моделей изучаемого механического явления;
- овладение важнейшими методами решения научно-технических задач в области механики, основными алгоритмами математического моделирования механических явлений;
- освоение методов определения силовых факторов и других характеристик при равновесии расчетного объекта;
- усвоить основы кинематического и динамического исследования расчетного объекта;
- формирование устойчивых навыков по применению фундаментальных положений теоретической механики при научном анализе ситуаций, с которыми инженеру приходится сталкиваться в ходе создания новой техники и новых технологий;
- формирование знаний и навыков, необходимых для изучения ряда профессиональных дисциплин, развитие логического мышления и творческого подхода к решению профессиональных задач.

Показатель освоения компетенции отражают следующие индикаторы:

Трудовые действия:

- Анализирует факторы вредного влияния на жизнедеятельность элементов среды обитания (технических средств, технологических процессов, материалов, зданий и сооружений, природных и социальных явлений);
- Владеет навыками теоретического и экспериментального исследования объектов профессиональной деятельности;
- Иметь навыки: моделирования и проектирования процессов, для решения инженерных задач.

Необходимые умения:

- Идентифицирует опасные и вредные факторы в рамках осуществляемой деятельности;
- Умеет решать стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования;
- Уметь: применять на практике математические и физические модели, методы и средства проектирования и автоматизации инженерных задач.

Необходимые знания:

- Выявляет проблемы, связанные с нарушениями техники безопасности на рабочем месте; предлагает мероприятиях по предотвращению чрезвычайных ситуаций;

- Знает основы математики, физики, вычислительной техники и программирования;
- Знать: методологию и основные методы математического моделирования, классификацию и условия применения моделей, основные методы и средства проектирования информационных и автоматизированных систем, для решения инженерных задач

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Теоретическая механика» относится к обязательной части блока 1 основной профессиональной образовательной программы подготовки по специальности 24.05.01 «Проектирование, производство и эксплуатация ракет и ракетно-космических комплексов».

Дисциплина базируется на ранее полученных знаниях по дисциплинам: «Линейная алгебра и аналитическая геометрия», «Физика», «Математический анализ», «Дифференциальные уравнения» и частично изученных компетенциях УК-1; УК-2; УК-6; ОПК-1, ОПК-5.

Знания и компетенции, полученные при освоении дисциплины «Теоретическая механика», являются базовыми при изучении дисциплин: «Сопротивление материалов», «Детали машин», «Строительная механика ракет», «Теория механизмов и машин», «Механика жидкости и газа», «Основы теории полета КА и баллистики ракет», «Экспериментальная отработка ракетной техники», а также ряда профессиональных дисциплин специальности и выполнения выпускной квалификационной работы инженера.

3. Объем дисциплины (модуля) и виды учебной работы

Общая трудоемкость дисциплины для обучающихся при очной форме обучения составляет 8 зачетных единиц, 288 часов.

Общая трудоемкость дисциплины для обучающихся при очно-заочной форме обучения составляет 8 зачетных единиц, 288 часов.

Таблица 1

Виды занятий	Всего	Семестр	Семестр	Семестр	Семестр		
	часов	3	4	5	• • •		
Общая трудоемкость	288	144	144	144			
ОЧНАЯ ФОРМА ОБУЧЕНИЯ							
Аудиторные занятия	128	64	64				
Лекции (Л)	64	32	32				
Практические занятия (ПЗ)	64	32	32				
Лабораторные работы (ЛР)	-	-	-				

Практическая подготовка	_	-	-		
Самостоятельная работа	160	80	80		
Курсовые работы (проекты)					
Расчетно-графические работы					
Контрольная работа	-	-	-		
Текущий контроль знаний	Тест	+	+		
Вид итогового контроля	Зачет /	Зачет	Экзамен		
-	экзамен				
ОЧНО-ЗА	Ф КАНРО	ОРМА ОБ	УЧЕНИЯ		
Аудиторные занятия	40		20	20	
Лекции (Л)	16		8	8	
Практические занятия (ПЗ)	24		12	12	
Лабораторные работы (ЛР)	-		-	-	
Практическая подготовка	-		-	-	
Самостоятельная работа	248		124	124	
Курсовые работы (проекты)					
Расчетно-графические работы					
Контрольная работа	-	-	-		
Вид итогового контроля	Зачет /		Зачет	Экзамен	
	экзамен				

4. Содержание дисциплины (модуля) 4.1. Темы дисциплины и виды занятий

Таблица 2

				-	аолица 2
Наименование тем	Лекции, час Очное /очно- заочное	Практические занятия, час Очное /очно- заочное	Занятия в интерактивной форме, час Очное /очно- заочное	Практическая подготовка, час Очное /очно- заочное	Код компетенций
	Тр	етий семестр		'	
Тема 1. Статика. Основные положения и аксиомы статистики.	10/2	10/4	5/3	-	
Тема 2. Кинематика. Кинематика точки. Кинематика твердого тела.	12/2	12/4	5/3	-	УК-8,
Тема 3. Динамика. Динамика материальной точки.	10/4	10/4	4/2		9 К-6, ОПК-1, ОПК-5
Итого 3 семестр	32/8	32/12	14/8		
Четвертый семестр					
Тема 4. Динамика материальной	4/2	8/3	4/2		

системы. Основные задачи динамики твердого тела.				
Тема 5. Малые колебания механических систем	4/2	8/3	4/2	
Тема 6. Элементы теории удара	4/2	8/3	4/2	
Тема 7. Элементы аналитической механики.	4/2	8/3	4/2	
Итого 4 семестр	32/8	32/12	16/8	
ИТОГО	64/16	64/24	30/16	

4.2. Содержание тем дисциплины

Тема 1. Статика.

- Тема 1.1. Введение в статику. Основные положения и аксиомы статистики. Моменты силы относительно точки и относительно оси. Моменты пар сил. Условия равновесия системы пар сил и системы.
- Тема 1.2. Главный вектор и главный момент системы сил. Основная теорема статики. Уравнения равновесия пространственной системы сил. Уравнения равновесия плоской системы сил.
- Тема 1.3. Центры тяжести простейших фигур. Методы нахождения центра тяжести.

Тема 2. Кинематика. Кинематика точки. Кинематика твердого тела.

- Тема 2.1. Введение в кинематику. Кинематика точки. Способы задания движения точки. Скорость и ускорение точки.
- Тема 2.2. Кинематика твердого тела. Задание движения твердого тела. Понятие о числе степеней свободы твердого тела. Поступательное движение твердого тела.
- Тема 2.3. Вращение твердого тела вокруг неподвижной оси. Плоское движение твердого тела. Сферическое движение твердого тела. Движение свободного твердого тела.
- Тема 2.4. Сложное движение точки. Теорема о сложении скоростей. Теорема о сложении ускорений.

Тема 3. Динамика. Динамика материальной точки

- Тема 3.1. Введение в динамику. Динамика материальной точки. Две основные задачи динамики. Инерциальные системы отсчета. Основное уравнение движения точки.
- Тема 3.2. Динамика несвободной материальной точки. Относительное движение материальной точки.

- **Тема 4.** Динамика материальной системы. Основные задачи динамики твердого тела.
- Тема 4.1. Динамика материальной системы. Центр масс. Внешние и внутренние силы. Общие теоремы динамики материальной системы.
- Тема 4.2. Теорема об изменении количества движения материальной системы. Теорема об изменении момента количеств движения материальной системы. Теорема о движении центра масс.

Тема 5. Малые колебания механических систем.

- Тема 5.1. Введение в теорию малых колебаний. Частота и период колебаний.
- Teма 5.2. Свободные и вынужденные колебания системы с одной степенью свободы. Колебания системы с двумя степенями свободы.

Тема 6. Элементы теории удара.

- Тема 6.1. Явление удара и его модель. Теоремы динамики при ударе.
- Коэффициент восстановления при ударе.
- Тема 6.2.Опытное определение коэффициента восстановления. Удар по телу, вращающемуся вокруг неподвижной оси. Центр удара.

Тема 7. Элементы аналитической механики.

- Тема 7.1. Связи и их классификация. Обобщенные координаты. Возможные и виртуальные перемещения. Виртуальная работа сил. Принцип возможных перемещений. Уравнение Лагранжа первого рода.
- Тема 7.2. Принцип Д'Ламбера и метод кинетостатики. Принцип Д'Ламбера-Лагранжа, общее уравнение динамики. Уравнение Лагранжа второго рода.

5. Перечень учебно-методического обеспечения для самостоятельной работы по дисциплине (модулю)

- 1. Практикум на кафедре.
- 2. Методические указания для обучающихся по освоению дисциплины «Теоретическая механика».

Целью лекций является изложение теоретического материала и иллюстрация его примерами и задачами.

Цель практических занятий состоит в закреплении материала лекций и выработке умения работать с конкретными методами проектирования и конструирования.

Самостоятельные занятия студентов проводятся в соответствии с программой по дисциплине «Теоретическая механика» и заданиями преподавателя с помощью базовых учебников и специальной учебнометодической литературы.

Самостоятельная работа студентов состоит:

- в расширении знаний по дисциплине путем изучения и анализа учебной и периодической литературы;
 - в подготовке выступлений на практических занятиях;

- в выступлениях с докладами на ежегодных студенческих конференциях;
 - в выполнении контрольных работ;
 - в выполнении расчетно-графической работы.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Структура фонда оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Теоретическая механика» приведена в Приложении 1 к настоящему Положению.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

Основная литература:

- 1. Хямяляйнен, В. А. Теоретическая механика: учебное пособие / В. А. Хямяляйнен. 3-е изд. Кемерово: КузГТУ имени Т.Ф. Горбачева, 2020. 226 с. ISBN 978-5-00137-137-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/145146 (дата обращения: 10.09.2021). Режим доступа: для авториз. пользователей. 2. Бутенин, Н. В. Курс теоретической механики: учебное пособие / Н. В. Бутенин, Я. Л. Лунц, Д. Р. Меркин. 12-е изд., стер. Санкт-Петербург: Лань, 2020. 732 с. ISBN 978-5-8114-5552-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/143116 (дата обращения: 10.09.2021). Режим доступа: для авториз. пользователей.
- 3. Сидашов, А. В. Актуализированный курс теоретической механики : учебное пособие / А. В. Сидашов. Ростов-на-Дону : РГУПС, 2020. 160 с. ISBN 978-5-88814-901-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/147360 (дата обращения: 10.09.2021). Режим доступа: для авториз. пользователей.
- 4. Прасолов, С. Г. Механика. Теоретическая механика: учебное пособие / С. Г. Прасолов. Тольятти: ТГУ, 2019. 99 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/139662 (дата обращения: 15.09.2021). Режим доступа: для авториз. пользователей.

Дополнительная литература:

1. Практикум по аналитической механике: учебное пособие / И. И. Галиев, М. Х. Минжасаров, В. М. Павлов, Е. А. Самохвалов. — Омск: ОмГУПС, 2020. — 27 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/165636 (дата обращения: 10.09.2021). — Режим доступа: для авториз. пользователей.

2. Теоретическая механика. Динамика: учебное пособие / В. Б. Зиновьев, Л. И. Ким, А. М. Попов, А. С. Самошкин. — Новосибирск: СГУПС, 2020. — 114 с. — ISBN 978-5-00148-124-9. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/164630 (дата обращения: 10.09.2021). — Режим доступа: для авториз. пользователей.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Интернет-ресурсы:

http://www.biblioclub.ru/

http://www.diss.rsl.ru/

http://www.rucont.ru/

http://www.znanium.com/

http://www.book.ru

http://e.lanbook.com/

http://www.biblio-online.ru

http://ies.unitech-mo.ru/

http://unitech-mo.ru/

9. Методические указания для обучающихся по освоению дисциплины

Методические указания для обучающихся по освоению дисциплины приведены в Приложении 2 к настоящему Положению.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: MSOffice

Информационные справочные системы:

- 1. Электронные ресурсы образовательной среды Университета.
- 2. Информационно-справочные системы «Консультант+», «Гарант».

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лекционные занятия:

- аудитория, оснащенная презентационной техникой (проектор, экран), интерактивной доской SmartBoard;
 - комплект электронных презентаций / слайдов

Практические занятия:

- учебный класс, оснащенный вычислительной техникой (ПК), программами Power Point;

- рабочее место преподавателя, оснащенное компьютером с доступом в Интернет;
- рабочие места студентов, оснащенные компьютерами с доступом в Интернет.

Проведение компьютерного тестирования может осуществляться в компьютерном классе университета, а также с использованием возможностей информационно-обучающей среды.

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИЙ МАШИНОСТРОЕНИЯ КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА»

Специальность: 24.05.01 «Проектирование, производство и эксплуатация ракет и ракетно–космических комплексов»

Специализация №21: «Производство и технологическая отработка изделий ракетно-космической техники»

Уровень высшего образования: специалитет

Квалификация (степень) выпускника: инженер

Форма обучения: очная, очно-заочная

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

	процессе освоения ооразовательной программы								
No	Индекс	Содержание	Раздел		зучения раздела				
п/п	компе-	компетенции	дисциплины,			ие компетенции,			
	тенции		обеспечиваю	(или ее части)	, обучающийся	приобретает:			
			-	Трудовые	Необходимы	Необходимые			
			щийформиро	действия	е умения	знания			
			-вание						
			компе-						
			тенции						
1	УК-8	Способен	Явление	Анализирует	Идентифицир	Выявляет			
		создавать и	резонанса,	факторы	ует опасные и	проблемы,			
		поддерживать в	определение	вредного	вредные	связанные с			
		повседневной	динамически	влияния на	факторы в	нарушениями			
		жизни и в	х реакций	жизнедеятельно	рамках	техники			
		профессиональн	подшипнико	сть элементов	осуществляем	безопасности на			
		ой деятельности	в при	среды обитания	ой	рабочем месте;			
		безопасные	вращении	(технических	деятельности;	предлагает			
		условия	твердого	средств,		мероприятиях			
		жизнедеятельно	тела,	технологически		по			
		сти для	виброзащита	х процессов,		предотвращени			
		сохранения		материалов,		Ю			
		природной		зданий и		чрезвычайных			
		среды,		сооружений,		ситуаций;			
		обеспечения		природных и		ситущий,			
		устойчивого		социальных					
		*		явлений)					
		развития		явлении)					
		общества, в том							
		числе при							
		угрозе и							
		возникновении							
		чрезвычайных							
		ситуаций и							
		военных							
		конфликтов;							
2	ОПК-1.	Способен	Темы 1-7	Владеет	Умеет	Знает основы			
		применять		навыками	решать	математики,			
		естественнонауч		теоретического	стандартные	физики,			
		ные и		И	профессиона	вычислительно			
		общеинженерны		эксперименталь	льные задачи	й техники и			
		е знания,		ного	c	программирова			
		методы		исследования	применение	ния			
		математическог		объектов	M				
		о анализа и		профессиональн	естественнон				
		моделирования,		ой деятельности	аучных и				
		теоретического		,,,	общеинжене				
		И			рных знаний,				
		эксперименталь			методов				
		ного			математичес				
					кого анализа				
		исследования				12			

3	ОПК-5.	для решения инженерных задач профессиональн ой деятельности; Способен разрабатывать физические и математические модели исследуемых процессов, явлений и объектов, относящихся к профессиональн	Темы 1-7	Иметь навыки: моделировани я и проектировани я процессов, для решения инженерных задач	и моделирован ия Уметь: применять на практике математичес кие и физические модели, методы и средства проектирова ния и	Знать: методологию и основные методы математическ ого моделировани я, классификаци ю и условия
		ой сфере деятельности для решения инженерных задач			автоматизац ии инженерных задач.	применения моделей, основные методы и средства проектирован ия информацион ных и автоматизиров анных систем, для решения инженерных задач

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Код компетенции	Инструменты, оценивающие сформированность компетенции	Этапы и показатель оценивания компетенции	Критерии оценивания компетенции на различных этапах формирования и шкалы оценивания
УК-8, ОПК-1, ОПК-5	Задачи	А) полностью сформирована (компетенция, освоена на высоком уровне) - 5 баллов Б) частично сформирована:	Например: Проводится в письменной форме. 1. Выбор оптимального метода решения задачи (1 балл). 2. Умение применить

		• компетенция освоена на продвинутом уровне - 4 балла; • компетенция освоена на базовом уровне - 3 балла; В) не сформирована компетенция не сформирована) - 2 и менее баллов	выбранный метод (1 балл). 3. Логический ход решения правильный, но имеются арифметические ошибки в расчетах (1 балл). 4. Решение задачи и получение правильного результата (2 балла). 5. Задача не решена вообще (0 баллов). Максимальная оценка - 5 баллов.
УК-8, ОПК-1, ОПК-5	Тест	А) полностью сформирована (компетенция освоена на высоком уровне) - 90% правильных ответов Б) частично сформирована: • компетенция освоена на продвинутом уровне - 70% правильных ответов; • компетенция освоена на базовом уровне - от 51% правильных ответов; В) не сформирована (компетенция не сформирована) - менее 50% правильных ответов	Проводится письменно. Время, отведенное на процедуру - 30 минут. Неявка — 0 баллов. Критерии оценки определяются процентным соотношением. Неудовлетворительно - менее 50% правильных ответов. Удовлетворительно - от 51 % правильных ответов. Хорошо - от 70%. Отлично - от 90%. Максимальная оценка — 5 баллов

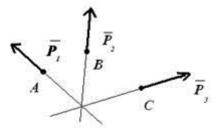
3.Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Контрольные задания:

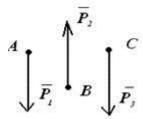
Домашнее контрольное задание выполняется по учебному пособию из основной литературы Прасолов С.Г. Задачник [4].

Вариант задания (номер задачи) определяется по номеру в списке электронного журнала успеваемости.

Тесты для промежуточной аттестации №1

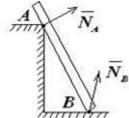

Тесты используются в режиме промежуточного контроля. По форме заданий выбраны закрытые тесты (с выборочным ответом). Каждому вопросу соответствует один вариант ответа.

- 1. Единица измерения силы?
- $\bar{F}[H]$
- $2 \bar{F}(cm)$
- 3. $\bar{F}(M)$
- 4. $\bar{F}(H/c_{\rm M})$
- 5. $\bar{F}(H/M)$
- 2. Сила \bar{F} направлена по оси Оу чему равна проекция силы на ось Ох?
- 1.0
- 2. F
- 3.-F
- 4.1 F
- 5.1 + F
- 3. Как направлен вектор силы тяжести тела?
- 1. по вертикали вниз из середины тела
- 2. вверх направлены
- 3. по горизонтали
- 4. по нормали
- 5. по касательной
- 4. Как направлена сила трения?
- 1. в противоположную сторону движения вдоль поверхности
- 2. вниз
- 3. вверх
- 4. по касательной
- 5. никак
- 5. Что называется равнодействующей системы сил?
- 1. векторная величина, равная геометрической сумме данных сил
- 2. равнодействующая данных моментов сил
- 3. сумма модулей данных сил
- 4. величина, равная сумме моментов данных сил

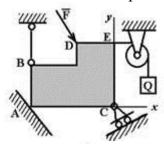

- 5. вектор, заменяющий данную систему сил
- 6. Система сходящихся сил?
- 1. системой сходящихся сил называется совокупность сил, линии действия которых пересекаются в одной точке
- 2. системой сходящихся сил называется совокупность сил, приложенных в нескольких точках
- 3. системой сходящихся сил называется совокупность сил, линии действия которых не пересекаются
- 4. системой сходящихся сил называется совокупность сил, линии действия которых пересекаются в нескольких точках
- 5. системой сходящихся сил называется совокупность сил, приложенных к центральной оси
- 7. Реакция сферического шарнира направлена...
- 1. произвольно в плоскости, перпендикулярной оси шарнира
- 2. произвольно в пространстве
- 3. вертикально
- 4. перпендикулярно плоскости, на которой находится шарнир
- 5. вдоль оси шарнира
- 8. При освобождении объекта равновесия от связей реакции опор имеют различное количество неизвестных составляющих. Если опорой является невесомая нерастяжимая гибкая связь, то количество составляющих реакции связи равно...
- 1. двум
- 2. шести
- 3. единице
- 4. трем
- 9 При освобождении объекта равновесия от связей, реакции опор имеют различное количество неизвестных составляющих. Если опорой является невесомый стержень, закрепленный шарнирно неподвижно на концах, то количество составляющих реакции связи равно...
 - 1. двум
 - 2. шести
 - 3. единице
 - 4. трем
- 10. При освобождении объекта равновесия от связей, реакции опор имеют различное количество неизвестных составляющих. Если опорой является

жесткая заделка для плоской задачи, то количество составляющих реакции связи равно...

- 1. двум
- 2. шести
- 3. единице
- 4. трем
- 11. При освобождении объекта равновесия от связей, реакции опор имеют различное количество неизвестных составляющих. Если опорой является шарнирно подвижная опора, то количество составляющих реакции связи равно...
 - 1. двум
 - 2. шести
 - 3. единице
 - 4. трем
- 12. При освобождении объекта равновесия от связей, реакции опор имеют различное количество неизвестных составляющих. Если опорой является сферический шарнир для пространственной задачи, то количество составляющих реакции связи равно...
 - 1. двум
 - 2. шести
 - 3. единице
 - 4. трем
- 13. На рисунке изображена ...



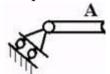
- 1) система сходящихся сил;
- 2) параллельная система сил;
- 3) система плоских сил;
- 4) силы реакции связи;
- 5) произвольная система сил.
- 14. На рисунке изображена:


- 1) параллельная система сил;
- 2) пересекающая система сил;
- 3) система плоских сил;
- 4) силы реакции связи;
- 5) произвольная система сил.

15. Какой вид связи изображен на рисунке?

- 1) гладкая поверхность;
- 2) плоскость;
- 3) подвижный шарнир;
- 4) жесткое защемление;
- 5) поверхность.

16. Реакция опоры в точке A правильно направлена на рисунке...



17. На рисунке представлено условное изображение опоры тела А, название которой...

- 1. цилиндрический неподвижный шарнир
- 2. невесомый жесткий стержень
- 3. шарнирно-подвижная опора
- 4. скользящая заделка
- 5. идеально гладкая поверхность

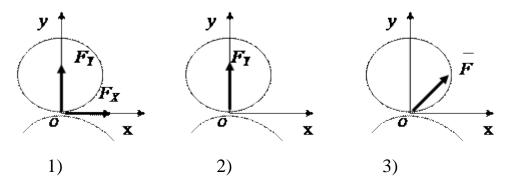
18. Система сил включает в себя силы: $F_1 = 6$ H; $F_2 = 8$ H; $F_3 = 2$ H; $F_4 = 6$ H. Модуль равнодействующей системы сил равен...Н

- 1. 2
- 2.6
- 3. $\sqrt{5}$
- 4.4
- 5. $2\sqrt{5}$

19. Силы P=1 H, Q=1 H приложены в одной точке, угол между ними α = 30°. Равнодействующая этих сил равна (с точностью до 0,1)...

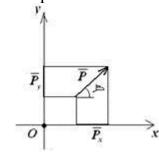
- 1. 1,9 H
- 2. 1,0 H
- 3. 2,0 H
- 4. 1,7 H
- 5. 1,4 H

20.Даны три сходящиеся силы. Заданы их проекции на оси кордит: $F_{1x}=7$ H; $F_{1y}=10$ H; $F_{1z}=0$ H; $F_{2x}=-5$ H; $F_{2y}=15$ H; $F_{2z}=12$ H; $F_{3x}=6$ H; $F_{3y}=0$ H; $F_{3z}=-6$ H. Тогда модуль равнодействующей этих сил равен...

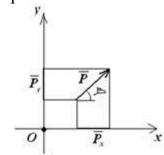

- 1. 26,9
- 2. 21,8
- 3. 32,6
- 4. 19,7
- 5. 31,1

21. Главный вектор системы сил определяется формулой?

- $1. \overrightarrow{R_0} = \sum_{K=1}^n \overrightarrow{F_K}$
- 2. $m = \frac{d^2r}{dt^2} = \sum_{k=1}^n \overrightarrow{F_k}$
- 3. $\overrightarrow{R_0} = \sum_{k=1}^n \overrightarrow{F_k^e}$
- $4. \overrightarrow{R_0} = \sum_{k=1}^n \overrightarrow{F_k^1}$


5.
$$\overrightarrow{R_0} = \sum_{k=1}^n m_0(\overrightarrow{F_k})$$

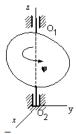
- 22. Какая из формул правильная?
 - 1. $m = \frac{G}{g}$
 - 2. m = lg
 - 3. $m = l^{2} F$
 - 4. $m = r \cdot F$
 - 5. m = F/r
- 23. Какая из формул правильная?
 - 1. Q = ql
 - $2. Q = q^2 l$
 - 3. $Q = ql^2$
 - 4. Q = q/l
 - 5. Q = l/q
- 24. По какой формуле определяется равнодействующая действия двух сил \vec{F}_1 и \vec{F}_2 при угле между линиями их действия равным 90°:
 - 1) $F_{\Sigma} = \sqrt{F_1^2 + F_2^2}$;
 - 2) $F_{\Sigma} = F_1 + F_2$;
 - 3) $F_{\Sigma} = F_1 F_2$.
- 25. Равнодействующая двух сил?
 - 1. $\bar{R} = \bar{F}_1 + \bar{F}_2$
 - 2. $R = F_1 + F_2$
 - 3. $R = F_1 F_2$
 - 4. $R = F_1 F_2$
 - $5. R = \overline{F}_1 + F_2$
- 26. Формула главного вектора системы сил?
 - 1. $\bar{R}_0 = \sum \bar{F}_k$
 - 2. $\bar{R}_0 = -\bar{R}_1$
 - 3. $\bar{R}_0 = \sum \bar{F}^{(k)}$
 - 4. $\bar{R}_0 = \bar{M}_0/d$
 - 5. $R_0 = 1q$
- 27. В каких связях перечисленных ниже, реакции всегда направлены по нормали к поверхности?
 - 1) гладкая плоскость;
 - 2) гибкая связь;
 - 3) жесткий стержень;
 - 4) шероховатая поверхность.
- 28. Реакции связи показаны правильно на рисунке....



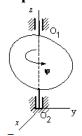
- 29. Модуль равнодействующей двух равных по модулю (5 H) сходящихся сил, образующих между собой угол 45°, равен...
 - 1. 9,24
 - 2. 5,73
 - 3. 4,87
 - 4. 8,21
 - 5. 6.38
- 30. Равнодействующая сходящихся сил $\vec{F_1}$ и $\vec{F_2}$ равна по модулю 8 Н и образует с горизонтальной осью Ox угол 30°. Вектор силы $\vec{F_1}$ направлен по оси Ox, а вектор $\vec{F_2}$ образует с этой осью угол 60°, тогда модуль силы $\vec{F_1}$ равен...
 - 1. 5,97
 - 2. 4,62
 - 3. 7,39
 - 4. 3,85
 - 5. 6,71
- 31. Плоская система трех сил находится в равновесии. Заданы модули сил $F_1 = 3$ Н и $F_2 = 2$ Н, а также углы, образованные векторами сил $\vec{F_1}$ и $\vec{F_2}$ с положительным направлением горизонтальной оси Ох, соответственно равные 15° и 45°. Тогда модуль силы $\vec{F_3}$ равен...
 - 1. 2,54
 - 2. 3,96
 - 3. 5,12
 - 4. 6,38
 - 5. 4,84
- 32. Даны проекции силы на оси координат: F_x =20 H, F_y =25 H, F_z =30 H. Тогда модуль этой силы равен...
 - 1. 43,9
 - 2. 32,8
 - 3. 51,6
 - 4. 29,8
 - 5. 39,6

- 33. Три вертикальных троса удерживают конструкцию весом 6 кН. Если натяжения двух тросов равны 1,75 кН, то натяжение третьего троса в кН равно...
 - 1. 2,5
 - 2. 3,2
 - 3. 1,9
 - 4. 2,9
 - 5. 3,1
 - 34. При каком значении угла β , проекция силы P на ось x равна нулю

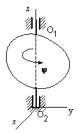
- 1) $\beta = 90^{\circ}$;
- 2) $\beta = 120^{\circ}$;
- 3) $\beta = 85^{\circ}$;
- 4) $\beta = 100^{\circ}$;
- 5) $\beta = 75^{\circ}$.
- 35. При каком значении угла β , проекция силы P на ось y равна нулю?

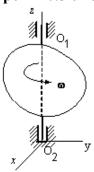


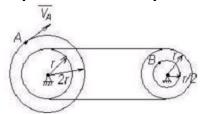
- 1) $\beta = 0^{\circ}$;
- 2) $\beta = 30^{\circ}$;
- 3) $\beta = 60^{\circ}$;
- 4) $\beta = 15^{\circ}$;
- 5) $\beta = -15^{\circ}$.

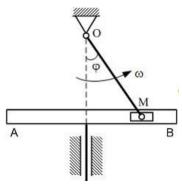

Тесты для промежуточной аттестации №2

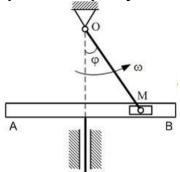
Тесты используются в режиме промежуточного контроля. По форме заданий выбраны закрытые тесты (с выборочным ответом). Каждому вопросу соответствует один вариант ответа.

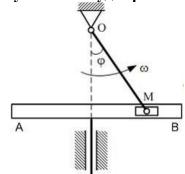

- 1. Пятипалубный пароход плывет со скоростью 9 км/ч, а лифт внутри парохода поднимается со скоростью 0,5 м/с. Тогда абсолютная скорость неподвижного человека внутри лифта равна...
 - 1. 0,87
 - 2. 1,12
 - 3. 2,55
 - 4. 2,19
- 2. Кузов вагона совершает одновременно два поступательных движения: в продольном направлении движется с постоянным ускорением 1 m/c^2 , а в вертикальном колеблется согласно закону $y=1+0.02\sin 2\pi t$. Тогда модуль максимального абсолютного ускорения вагона равен...
 - 1. 1,82
 - 2. 1,27
 - 3. 3,14
 - 4. 2,03
- 3. Твердое тело вращается вокруг неподвижной оси OO_1 по закону $\varphi = (4 + \sqrt{3})^2 7t$. В момент времени 1 с тело будет вращаться...


- 1. ускоренно
- 2. замедленно
- 3. равноускоренно
- 4. равномерно
- 4. Твердое тело вращается вокруг неподвижной оси OO_1 по закону $\propto = 4 + 2t^2$. В момент времени 1 с тело будет вращаться...


- 1. ускоренно
- 2. замедленно
- 3. равноускоренно
- 4. равномерно
- **5.** Твердое тело вращается вокруг неподвижной оси OO_1 по закону $\varphi = (3-t)^2 + 11$. В момент t=1 с тело будет вращаться...

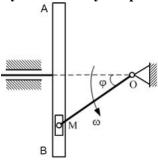

- 1. равнозамедленно
- 2. ускоренно
- 3. замедленно
- 4. равноускоренно
- 5. равномерно
- 6. Тело равномерно вращается вокруг оси Z с угловой скоростью $\omega = 6$ с⁻¹. За время 0.5 с тело повернется на угол...


- 1.360^{0}
- 2. 3 рад
- 3. 12 рад
- 4.120^{0}
- 7. Два шкива соединены ременной передачей. Точка A одного из шкивов имеет скорость 20 см/с. Скорость точки B другого шкива в этом случае равна...


- 1. $V_B = 40 \, \text{cm/c}$
- 2. $V_B = 5 \text{ cm/c}$
- 3. $V_B = 10 \text{ cm/c}$
- 4. $V_B = 20 \, \text{cm/c}$
- 8. В кривошипно-кулисном механизме кривошип OM=10 см вращается с угловой скоростью ω =2 с⁻¹. При этом ползун M движется в прорези кулисы, заставляя ее совершать возвратно-поступательное движение. Считаем движение ползуна M сложным, и в тот момент, когда угол $\varphi = \frac{\pi}{6}$ скорость кулисы AB будет равна...

- 1. $V_{AB} = 10 \text{ cm/c}$
- 2. $V_{AB} = 20 \text{ cm/c}$
- 3. $V_{AB} = 10\sqrt{2} \text{ cm/c}$
- 4. $V_{AB} = 20\sqrt{2} \text{ cm/c}$
- 9. В кривошипно-кулисном механизме кривошип OM= 10 см вращается с угловой скоростью ω =2 с $^{-1}$. При этом ползун M движется в прорези кулисы, заставляя ее совершать возвратно-поступательное движение. Считаем движение ползуна M сложным, и в тот момент, когда угол φ = 0^{0} , скорость кулисы AB будет равна...

- 1. $V_{AB} = 20 \text{ cm/c}$
- 2. $V_{AB} = 0 \text{ cm/c}$
- 3. $V_{AB} = 20\sqrt{2} \text{ cm/c}$
- 4. $V_{AB} = 20\sqrt{3} \text{ cm/c}$
- 10. В кривошипно-кулисном механизме кривошип OM=10 см вращается с угловой скоростью ω =2 с⁻¹. При этом ползун M движется в прорези кулисы, заставляя ее совершать возвратно-поступательное движение. Считаем движение ползуна M сложным, и в тот момент, когда угол $\varphi = \frac{\pi}{3}$, скорость кулисы AB будет равна...

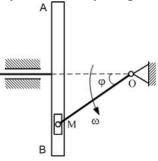

1.
$$V_{AB} = 10 \text{ cm/c}$$

2.
$$V_{AB} = 20 \text{ cm/c}$$

3.
$$V_{AB} = 10\sqrt{3} \text{ cm/c}$$

4.
$$V_{AB} = 20\sqrt{3} \text{ cm/c}$$

11. В кривошипно-кулисном механизме кривошип OM=20 см вращается с угловой скоростью ω =1 с⁻¹. При этом ползун M движется в прорези кулисы, заставляя ее совершать возвратно-поступательное движение. Считаем движение ползуна M сложным, и в тот момент, когда угол $\phi = \frac{\pi}{6}$, скорость кулисы AB будет равна...

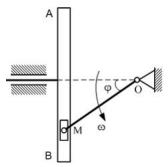

1.
$$V_{AB} = 10 \text{ cm/c}$$

2.
$$V_{AB} = 20 \text{ cm/c}$$

3.
$$V_{AB} = 10\sqrt{3} \text{ cm/c}$$

4.
$$V_{AB} = 20\sqrt{3} \text{ cm/c}$$

12. В кривошипно-кулисном механизме кривошип OM=20 см вращается с угловой скоростью ω =1 с⁻¹. При этом ползун M движется в прорези кулисы, заставляя ее совершать возвратно-поступательное движение. Считаем движение ползуна M сложным, и в тот момент, когда угол $\varphi = \frac{\pi}{3}$ скорость кулисы AB будет равна...


1.
$$V_{AB} = 10 \text{ cm/c}$$

2.
$$V_{AB} = 20 \text{ cm/c}$$

3.
$$V_{AB} = 10\sqrt{3} \text{ cm/c}$$

4.
$$V_{AB} = 20\sqrt{3} \text{ cm/c}$$

13. В кривошипно-кулисном механизме кривошип OM=20 см вращается с угловой скоростью ω =1 с⁻¹. При этом ползун M движется в прорези кулисы, заставляя ее совершать возвратно-поступательное движение. Считаем движение ползуна M сложным, и в тот момент, когда угол φ = 0^{0} скорость кулисы AB будет равна...

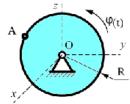
- 1. $V_{AB} = 10 \text{ cm/c}$
- 2. $V_{AB} = 20 \text{ cm/c}$
- 3. $V_{AB} = 10\sqrt{3} \text{ cm/c}$
- 4. $V_{AB} = 0$ cm/c

14. Вращение колеса относительно неподвижной оси задано уравнением $\varphi = 3t^3$, где φ - угол в радианах, t - время в секундах. Угловое ускорение колеса в момент времени 0,5 с равно (рад/ c^2).

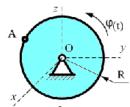
- 1. 12
- 2.9
- 3.18
- 4. 6

15. Вращение колеса относительно неподвижной оси задано уравнением $\varphi = 11 + 2t^3$, где φ - угол в радианах, t - время в секундах. Угловое ускорение колеса в момент времени 2 с равно...(рад/ c^2).

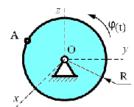
- 1.12
- 2.36
- 3.18
- 4.24

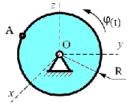

16. Вращение колеса относительно неподвижной оси задано уравнением $\varphi = 4t + 2t^3$, где φ - угол в радианах, t - время в секундах. Угловое ускорение колеса в момент времени 1 с равно (рад/ \mathbf{c}^2).

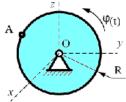
- 1 12
- 2.36
- 3.18
- 4. 16

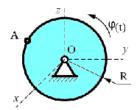

17. Вращение колеса относительно неподвижной оси задано уравнением $\varphi = 3t + t^3$, где φ - угол в радианах, t - время в секундах. Угловое ускорение колеса в момент времени 3 с равно (рад/ c^2).

- 1.12
- 2.9
- 3.18
- 4. 6


- 18. Вращение колеса относительно неподвижной оси задано уравнением $\varphi = 3t^2 + 3t^3$, где φ угол в радианах, t время в секундах. Угловое ускорение колеса в момент времени 1 с равно...(рад/ c^2).
 - 1.12
 - 2.16
 - 3.18
 - 4.36
 - 5.24
- 19. Вращение колеса относительно неподвижной оси задано уравнением $\varphi = 7 + 3t^3$, где φ угол в радианах, t время в секундах. Угловое ускорение колеса в момент времени 2 с равно...(рад/ c^2).
 - 1.36
 - 2.24
 - 3. 18
 - 4. 12
- 20. Диск радиуса R = 10 см вращается вокруг оси Ox по закону $\varphi = 2 + 3t$ (φ в радианах, t в секундах). Скорость точки A при t = 2 с будет равна...

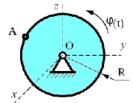

- 1.30 cm/c
- 2.80 cm/c
- 3.60 cm/c
- 4. 32 cm/c
 - **21.** Диск радиуса R = 30 см вращается вокруг оси Ox по закону $\varphi = 2 + t^3$ рад. Нормальное ускорение точки A в момент времени t = 2 с равно...


- 1.4320 cm/c^2
- 2. 1440 cm/c^2
- 3. 1600 cm/c^2
- 4 360 cm/ c^2
 - 22. Диск радиуса R=10 см вращается вокруг оси Ox по закону $\varphi = 2 + t^3$ рад. Скорость точки A в момент времени t = 2 с равно...

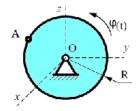

- 1. 90 см/с
- 2.70 cm/c
- 3. 120 см/с
- 4. 140 см/с
- 23. Диск радиуса R=10 см вращается вокруг оси Ox по закону $\varphi = 2 + t^3$ рад. Касательное ускорение точки A в момент времени t = 0.5 с равно...

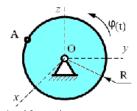
- 1.30 cm/c^2
- 2. 180 cm/c^2
- 3. 150 cm/c^2
- 4. 200 cm/c^2
- **24.** Диск радиуса R=10 см вращается вокруг оси Ox по закону $\varphi = 2 + 3t$ рад. Ускорение точки A в момент времени t = 2 с равно...

- $1.0 \, \text{cm/c}^2$
- 2. 50 cm/c^2
- 3.250 cm/c^2
- 4. 90 cm/c^2
 - **25.** Диск радиуса R=10 см вращается вокруг оси Ox по закону $\varphi = 2 + 3t$ рад. Скорость точки A в момент времени t=2 с равно...

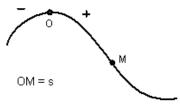


- 1. 32 см/с
- 2.60 cm/c
- 3.30 cm/c
- 4.80 cm/c

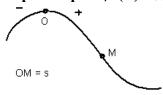

26. Диск радиуса \mathbf{R} =10 см вращается вокруг оси Ox по закону $\varphi = 4 + 2t^2$ рад. Скорость точки A в момент времени t = 2 с равно...


- 1.40 cm/c
- 2. 80 см/с
- 3.20 cm/c
- 4.160 cm/c
 - 27. Диск радиуса R=10 см вращается вокруг оси Ox по закону $\varphi = 5 + t^3$ рад. Скорость точки A в момент времени t = 2 с равно...

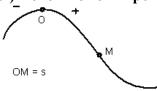
- 1. 120 см/с
- 2.130 cm/c
- 3.170 cm/c
- 4. 80 см/с
- 28. Диск радиуса R=10 см вращается вокруг оси Ox по закону $\varphi = t + t^4$ рад. Скорость точки A в момент времени t = 2 с равно...

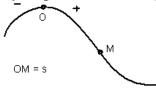


- 1. 130 см/с
- 2.170 cm/c
- 3.330 cm/c
- 4. 90 см/с
- **29.** Диск радиуса R=10 см вращается вокруг оси Ox по закону $\varphi = 2 + 2t^2$ рад. Скорость точки A в момент времени t = 2 с равно...

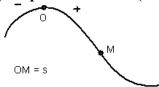


- 1.40 cm/c
- 2.100 cm/c
- 3.80 cm/c
- 4.60 cm/c

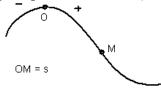

30. Движение точки по известной траектории задано уравнением $s=5-1,5t^2$ (м). Скорость точки V в момент времени 1 с равна (м/с).


- 1.5
- 2.3,5
- 3. -3
- 4. 2
 - 31. Точка движется по заданной траектории по закону $s(t) = 1 2t + 3t^2$ (м). В момент времени t = 1 с нормальное ускорение равно 2 (м/с²). Радиус кривизны траектории ρ (м) в данный момент равно 8 м

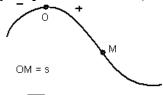
- 1.8
- 2.0,5
- 3. 12,5
- 4. 2
- 32. Точка движется по заданной траектории по закону $s(t) = 2t^2 5t$ (м). В момент времени t = 1 с нормальное ускорение точки равно 4 (м/с²). Полное ускорение точки a (м/с²) в этот момент времени равно...

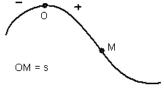


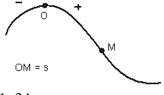
- 1.5
- 2. 6
- 3. 3,5
- $4.4\sqrt{2}$
 - 33. Точка движется по заданной траектории по закону $s(t) = -10 + 2t + t^3$ (м). В момент времени t = 1 с нормальное ускорение точки равно 6 (м/с²). Полное ускорение точки a (м/с²) в этот момент времени равно...



- 1.11
- 2. $6\sqrt{2}$
- 3. 12
- 4.6


34. Точка движется по заданной траектории по закону $s(t) = 4t^2 - 3t + 5$ (м). В момент времени t = 1 с нормальное ускорение точки равно 6 (м/с²). Полное ускорение точки a (м/с²) в этот момент времени равно...


- 1. $6\sqrt{5}$
- 2. $4\sqrt{13}$
- 3. 134. $2\sqrt{61}$
- 4. 10
- 35. Точка движется по заданной траектории по закону $s(t) = -10 + 7t t^3$ (м). В момент времени t=1 с нормальное ускорение точки равно 8 (м/с²). Полное ускорение точки a (м/с²) в этот момент времени равно...


- 1.10
- 2. $2\sqrt{41}$
- 3. 14
- 4. $4\sqrt{5}$
- 36. Точка движется по заданной траектории по закону $s(t) = t^4 t^3 + 5t$ (м). В момент времени t = 1 с нормальное ускорение точки равно 6 (м/с²). Полное ускорение точки a (м/с²) в этот момент времени равно...

- 1. $\sqrt{37}$
- 2. $\sqrt{61}$
- 3. 12
- 4. $6\sqrt{2}$
- 37. Точка движется по заданной траектории по закону $s(t) = 9 6t + 4t^2$ (м). В момент времени t = 1 с нормальное ускорение точки равно 6 (м/с²). Полное ускорение точки a (м/с²) в этот момент времени равно...

- 1.8
- 2.10
- 3. 14
- 4. 13
- **38.** Точка движется по заданной траектории по закону $s(t) = 2t^4 t^3 + 6t$ (м). В момент времени t = 1 с нормальное ускорение точки равно 0 (м/с²). Полное ускорение точки a (м/с²) в этот момент времени равно...

- 1.34
- 2.24
- 3. 21
- 4. 18

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Формой контроля знаний по дисциплине «Теоретическая механика» являются две текущие аттестации в виде тестов и заключительная аттестация в виде зачета и экзамена.

Неделя текущего контроля	Вид оценочного средства	Код компетенций, оценивающий знания, умения, навыки	Содержание оценочного средства	Требования к выполнени ю	- '	Критерии оценки по содержанию и качеству с указанием баллов
В соответст вии с графиком учебного процесса		УК-8, ОПК-1, ОПК-5	20 вопросов	Компьютерное тестирование; время, отведенное на процедуру -30 минут	Результаты тестирования предоставляю тся в день проведения процедуры	Критерии оценки определяются процентным соотношением. Не явка -0 Удовлетворительн о - от 51% правильных ответов. Хорошо - от 65%. Отлично – от 85%.
В соответств ии с графиком	•	УК-8, ОПК-1, ОПК-5	20	Компьютерное тестирование; время,	. Результаты тестирования предоставляю	Критерии оценки определяются процентным соотношением.

учебного процесса			вопросов	отведенное на процедуру -30 минут	тся в день проведения процедуры	Не явка -0 Удовлетворительн о - от 51% правильных ответов. Хорошо - от 65%.
В соответств ии с графиком учебного процесса	зачет	УК-8, ОПК-1, ОПК-5	2 вопроса	Зачет проводится в устной форме, путем ответа на вопросы. Время, отведенное на процедуру – 30 минут	б. Результаты предоставляю тся в день проведения зачета	хорошо - от 65%. Отлично – от 85%. Критерии оценки: «Зачтено»: знание основных понятий предмета; умение использовать и применять полученные знания на практике; работа на семинарских занятиях; знание основных научных теорий, изучаемых предметов; ответ на вопросы билета. «Не зачтено»: демонстрирует частичные знания по темам дисциплин; незнание основных понятий предмета; неумение использовать и применять полученные знания на практике; не работал на семинарских занятиях; не отвечает на
В соответств	экзамен	УК-8, ОПК-1, ОПК-5	2 вопроса, решение задачи	Экзамен проводится в устной и	Результаты предоставля ются в день	вопросы. Критерии оценки: «Отлично»:
графиком учебного		OHIC-J		письменной	проведения экзамена	•знание

процессо	T T	форме,	основных
процесса			понятий
		путем ответа	
		на вопросы и	предмета;
		решения	•умение
		задачи.	использовать и
		Время,	применять
		отведенное	полученные
		на	знания на
		процедуру –	практике;
		30 минут.	•работа на
			практических
			занятиях;
			•знание
			основных
			научных теорий,
			изучаемых
			предметов;
			•ответ на
			вопросы билета.
			«Хорошо»:
			• знание
			основных
			понятий
			предмета;
			• умение
			использовать и
			применять
			полученные
			знания на
			практике;
			• работа на
			практических
			занятиях;
			• знание
			основных
			научных теорий,
			изучаемых
			предметов;
			• ответы на
			вопросы билета
			• неправильно
			решено
			практическое
			задание
			«Удовлетвори-
			тельно»:
			•демонстрирует
			частичные
			знания по темам
			дисциплин;
			•незнание
			неумение
			использовать и
			применять
			применить

			полученные
			знания на
			практике;
			•не работал на
			практических
			занятиях;
			«Неудовлетвори-
			ельно»:
			•демонстрирует
			частичные
			знания по темам
			дисциплин;
			•незнание
			основных
			понятий
			предмета;
			•неумение
			использовать и
			применять
			полученные
			знания на
			практике;
			•не работал на
			практических
			занятиях;
			•не отвечает на
			вопросы.

Итоговое начисление баллов по дисциплине осуществляется в соответствии с разработанной и внедренной балльно-рейтинговой системой контроля и оценивания уровня знаний и внеучебной созидательной активности обучающихся.

4.1. Типовые вопросы, выносимые на зачет

- 1. Аксиомы статики.
- 2. Связи и реакции связей.
- 3. Способы сложения сил.
- 4. Моменты сил.
- 5. Теория пар.
- 6. Плоская система сил.
- 7. Трение.
- 8. Центр тяжести.
- 9. Кинематика точки.
- 10. Плоскопараллельное движение твердого тела.
- 11. Сложное движение точки.
- 12. Сложное движение твердого тела.
- 13. Основные законы механики.

4.2. Типовые вопросы, выносимые на экзамен

- 1. Динамика материальной точки.
- 2. Теорема об изменении количества движения.
- 3. Момент инерции.
- 4. Теорема об изменении кинетического момента.
- 5. Мощность и работа сил.
- 6. Теорема о кинетической энергии.
- 7. Потенциальное силовое поле.
- 8. Принцип Даламбера.
- 9. Принцип Лагранжа.
- 10. Уравнение Лагранжа второго рода.
- 11. Свободные колебания системы с одной степенью свободы.
- 12. Вынужденные колебания системы с одной степенью свободы.
- 13. Свободные колебания системы с двумя степенями свободы.
- 14. Вынужденные колебания системы с двумя степенями свободы.
- 15. Теоремы теории удара.
- 16. Прямой центральный удар двух тел.
- 17. Удар по вращающемуся телу.

Методические указания для обучающихся по освоению дисциплины (модуля)

ИНСТИТУТ РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ И ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ

КАФЕДРА ТЕХНИКИ И ТЕХНОЛОГИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА»

Специальность: 24.05.01 «Проектирование, производство и эксплуатация ракет и ракетно–космических комплексов»

Специализация №21: «Производство и технологическая отработка изделий ракетно-космической техники»

Уровень высшего образования: специалитет

Квалификация (степень) выпускника: инженер

Форма обучения: очная, очно-заочная

Королёв 2023

1. Обшие положения

Цель дисциплины:

- изучение общей теории о совокупности сил, приложенных к материальным телам, и об основных операциях над силами, позволяющих приводить совокупности их к наиболее простому виду, выводить условия равновесия материальных тел, находящихся под действием заданной совокупности сил, и определять реакции связей, наложенных на данное материальное тело;
- изучение способов количественного описания существующих движений материальных тел в отрыве от силовых взаимодействий их с другими телами или физическими полями, таких как орбитальные движения небесных тел, искусственных спутников Земли, колебательные движения (вибрации) в широком их диапазоне;
- изучение движения материальных тел в связи с механическими взаимодействиями между ними.

Задачи дисциплины:

- ознакомление студентов с основными понятиями и законами механики (статики, кинематики, динамики) и вытекающими из этих законов методами изучения равновесия и движения материальной точки, твердого тела и механической системы:
- изучение механической компоненты современной естественнонаучной картины мира, понятий и законов теоретической механики;
- дать студенту первоначальные представления о постановке инженерных задач, составлении математических и динамических моделей изучаемого механического явления;
- овладение важнейшими методами решения научно-технических задач в области механики, основными алгоритмами математического моделирования механических явлений;
- освоение методов определения силовых факторов и других характеристик при равновесии расчетного объекта;
- усвоить основы кинематического и динамического исследования расчетного объекта;
- формирование устойчивых навыков по применению фундаментальных положений теоретической механики при научном анализе ситуаций, с которыми инженеру приходится сталкиваться в ходе создания новой техники и новых технологий;
- формирование знаний и навыков, необходимых для изучения ряда профессиональных дисциплин, развитие логического мышления и творческого подхода к решению профессиональных задач.

2. Указания по проведению практических (семинарских) занятий *3 семестр*

Практическое занятия 1.

Тема: Введение в статику. Основные положения и аксиомы статистики. Связи. Реакиии связей.

Вид практического занятия: практическая работа в группах.

Цель работы: познакомить с темой статики

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 10/4ч.

Практическое занятия 2.

Тема: Проекции сил на оси декартовых координат. Условия равновесия сходящихся сил. Определение усилий в стержнях ферм.

Вид практического занятия: практическая работа в группах.

Цель работы: изучить проекции сил на оси декартовых координат, условия равновесия сходящихся сил, определение усилий в стержнях ферм.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 12/4 ч.

Практическое занятия 3.

Тема: Моменты силы относительно точки и относительно оси. Моменты пар сил. Условия равновесия системы пар сил и системы. Главный вектор и главный момент системы сил. Основная теорема статики.

Вид практического занятия: практическая работа в группах.

Цель работы: изучить моменты силы относительно точки и относительно оси, моменты пар сил, условия равновесия системы пар сил и системы, главный вектор и главный момент системы сил, основная теорема статики, образовательные технологии: традиционная технология Продолжительность занятий составляет — 10/4 ч.

Практическое занятия 4.

Тема: Уравнения равновесия пространственной системы сил. Уравнения равновесия плоской системы сил.

Вид практического занятия: практическая работа в группах.

Цель работы: рассмотреть уравнения равновесия пространственной системы сил, уравнения равновесия плоской системы сил.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 8/3 ч.

Практическое занятия 5.

Тема: Центры тяжести простейших фигур. Методы нахождения центра тяжести. Составление уравнений равновесия сил и вычисление неизвестных нагрузок на конструкции и в механизмах.

Вид практического занятия: практическая работа в группах.

Цель работы: изучить центры тяжести простейших фигур, методы нахождения центра тяжести, составление уравнений равновесия сил и вычисление неизвестных нагрузок на конструкции и в механизмах.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 8/3 ч.

Практическое занятия 6.

Тема: Введение в кинематику. Кинематика точки. Способы задания движения точки.

Вид практического занятия: практическая работа в группах.

Цель работы: познакомить с темой кинематики.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 8/3 ч.

Практическое занятия 7.

Тема: Скорость и ускорение точки. Кинематика твердого тела. Задание движения твердого тела. Понятие о числе степеней свободы твердого тела. Поступательное движение твердого тела.

Вид практического занятия: практическая работа в группах.

Цель работы: изучить скорость и ускорение точки, кинематика твердого тела, задание движения твердого тела, понятие о числе степеней свободы твердого тела, поступательное движение твердого тела.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 8/3 ч.

Практическое занятия 8.

Тема: Вращательное движение твердого тела. Передаточные механизмы. Преобразование вращательного движения.

Вид практического занятия: практическая работа в группах.

Цель работы: изучить вращательное движение твердого тела, передаточные механизмы, преобразование вращательного движения.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 8/3 ч.

Практическое занятия 9.

Тема: Плоское движение твердого тела. Мгновенный центр скоростей. Мгновенный центр ускорений.

Вид практического занятия: практическая работа в группах.

Цель работы: изучить плоское движение твердого тела, мгновенный центр скоростей, мгновенный центр ускорений.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 10.

Тема: Сферическое движение твердого тела. Движение свободного твердого тела.

Вид практического занятия: практическая работа в группах.

Цель работы: изучить сферическое движение твердого тела, движение свободного твердого тела

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 11.

Тема: Сложное движение точки. Теорема о сложении скоростей. Теорема о сложении ускорений.

Вид практического занятия: практическая работа в группах.

Цель работы: рассмотреть сложное движение точки, теорему о сложении скоростей, теорему о сложении ускорений.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 12.

Тема: Введение в динамику. Динамика материальной точки. Две основные задачи динамики.

Вид практического занятия: практическая работа в группах.

Цель работы: познакомить с темой динамики.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 13.

Тема: Инерциальные системы отсчета. Основное уравнение движения точки.

Вид практического занятия: практическая работа в группах.

Цель работы: изучить инерциальные системы отсчета, основное уравнение движения точки.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет –2/0,5 ч.

Практическое занятия 14.

Тема: Динамика несвободной материальной точки. Относительное движение материальной точки.

Вид практического занятия: практическая работа в группах.

Цель работы: изучить динамику несвободной материальной точки, относительное движение материальной точки

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 15.

Tema: Теорема об изменении количества движения материальной точки. Понятие о теле переменной массы.

Вид практического занятия: практическая работа в группах.

Цель работы: рассмотреть теорему об изменении момента количества движения материальной системы, понятие о теле переменной массы Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 16.

Тема: Теорема об изменении момента количества движения материальной точки. Теорема об изменении кинетической энергии материальной точки

Вид практического занятия: практическая работа в группах

Цель работы: рассмотреть теорему об изменении момента количества движения материальной системы, теорему об изменении кинетической энергии материальной точки

Образовательные технологии: традиционная технология.

Продолжительность занятий составляет – 2/0,5 ч.

4 семестр

Практическое занятия 17.

Tema: Динамика материальной системы. Центр масс. Внешние и внутренние силы. Моменты инерции твердого тела. Радиус инерции.

Вид практического занятия: практическая работа в группах.

Цель работы: изучить динамику материальной системы

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 18.

Тема: Теорема об изменении количества движения материальной системы.

Вид практического занятия: практическая работа в группах.

Цель работы: рассмотреть теорему об изменении количества движения материальной системы.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 19.

Тема: Теорема об изменении момента количества движения материальной системы. Теорема о движении центра масс.

Вид практического занятия: практическая работа в группах.

Цель работы: рассмотреть теорему об изменении момента количества движения материальной системы, теорему о движении центра масс.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 20.

Тема: Работа. Теорема об изменении кинетической энергии.

Вид практического занятия: практическая работа в группах. *Цель работы*: рассмотреть теорему об изменении кинетической энергии Образовательные технологии: традиционная технология Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 21.

Тема: Потенциальное силовое поле. Законы Кеплера. Понятия о траекториях ИСЗ.

Вид практического занятия: практическая работа в группах. *Цель работы*: изучить потенциальное силовое поле Образовательные технологии: традиционная технология Продолжительность занятий составляет — 4/1ч.

Практическое занятия 22.

Тема: Малые колебания механических систем. Введение в теорию малых колебаний. Частота и период колебаний. Свободные и вынужденные колебания системы с одной степенью свободы. Колебания системы с двумя степенями свободы.

Вид практического занятия: практическая работа в группах. *Цель работы*: изучить малые колебания механических систем Образовательные технологии: традиционная технология Продолжительность занятий составляет — 4/1ч.

Практическое занятия 23.

Тема: Явление удара и его модель. Теоремы динамики при ударе. Коэффициент восстановления при ударе. Опытное определение коэффициента восстановления. Удар по телу, вращающемуся вокруг неподвижной оси. Центр удара.

Вид практического занятия: практическая работа в группах. *Цель работы*: изучить явление удара и его модель Образовательные технологии: традиционная технология Продолжительность занятий составляет — 8/2ч.

Практическое занятия 24.

Тема: Связи и их классификация. Обобщенные координаты. Возможные и виртуальные перемещения. Виртуальная работа сил. Принцип возможных перемещений.

Вид практического занятия: практическая работа в группах. *Цель работы*: рассмотреть связи и их классификация Образовательные технологии: традиционная технология Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 25.

Тема: Потенциальное силовое поле. Закон сохранения механической энергии.

Вид практического занятия: практическая работа в группах.

Цель работы:

Образовательные технологии: традиционная технология

Продолжительность занятий составляет – 2/0,5 ч.

Практическое занятия 26.

Тема:. Принцип Д'Ламбера и метод кинетостатики. Принцип Д'Ламбера-Лагранжа, общее уравнение динамики. Определение динамических реакций подшипников при вращении твердого тела вокруг неподвижной оси.

Вид практического занятия: практическая работа в группах.

Цель работы: изучить принцип Д'Ламбера и метод кинетостатики, принцип

Д'Ламбера-Лагранжа, общее уравнение динамики.

Образовательные технологии: традиционная технология

Продолжительность занятий составляет –2/0,5 ч.

Практическое занятия 27.

Тема: Элементы аналитической механики

Вид практического занятия: практическая работа в группах.

Цель работы: рассмотреть элементы аналитической механики

Образовательные технологии: традиционная технология

Тема: Уравнение Лагранжа второго рода.

Продолжительность занятий составляет –2/0,5 ч.

3.Указания по проведению лабораторного практикума.

Не предусмотрено учебным планом.

4. Указания по проведению самостоятельной работы обучающихся

№ п/п	Наименование блока (раздела) дисциплины	Виды самостоятельной работы		
1.	Темы №1-7	Выполнение контрольных задач		
2.	Темы №1-7	Изучение открытых источников на предлагаемую тематику. 1. История исследований движения свободно падающего тела и движения тела, брошенного под углом к горизонту. 2. Аналитическая механика после Ньютона.		

T
Проблемы, связанные с постановкой новых задач,
и пути их решения.
3. Кинематические модели движения планет от
Евдокса до Птолемея.
4. Проблема равновесия на наклонной плоскости
в истории механики.
5. Шарнир Гука
6. Гироскопы
7. Движение спутников земли по круговой орбите.
8. Теоретическая механика и космическая техника
9. От теоретической механики к проектированию
машин.
10. Рычаг. Устойчивость при опрокидывании.
Коэффициент устойчивости.
11. Графики движения, пути, скорости и
касательного ускорения точки.
12. Годограф скорости точки и его уравнения.

5. Указания по проведению контрольных работ для обучающихся очной формы обучения

5.1. Требования к структуре

Контрольные работы необходимо выполнять в школьной тетради, на обложке которой привести сведения по следующему образцу:

Контрольная работа по ТМ № __ Студент – Киселев А.В. Группа – РО–19 Шифр – (номер зачетной книжки).

5.2. Требования к содержанию

- 1. Если контрольная работа при рецензировании не зачтена, студент обязан представить ее на повторную рецензию, включив в нее те задачи, решения которых оказались неверными. Повторную работу необходимо представить вместе с не зачтенной работой.
- 2. Зачтенные контрольные работы предъявляются экзаменатору. Студент должен быть готов, во время экзамена (зачета) дать пояснения по существу решения задач, входящих в контрольные работы.
- 3. Обозначения физических величин в условии задачи, на рисунке и в ходе решения должны быть одинаковыми.
- 4. Решать задачу надо в общем виде, т.е. выразить искомую величину в буквенных обозначениях величин, заданных в условии задачи. При таком способе решения не производятся вычисления промежуточных величин.

- 5. После получения расчетной формулы для проверки правильности ее следует подставить в правую часть формулы вместо символов величин обозначения единиц этих величин, произвести с ними необходимые действия и убедиться в том, что полученная при этом единица соответствует искомой величине. Если такого соответствия нет, то это означает, что задача решена неверно.
- 6. При подстановке в расчетную формулу, а также при записи ответа числовые значения величин следует записывать как произведение десятичной дроби с одной значащей цифрой перед запятой на соответствующую степень десяти. Например, вместо 0,00129 кг записать 1,29*10⁻³кг т.п.
- 7. Вычисления по расчетной формуле надо проводить с соблюдением правил приближенных вычислений. Как правило, окончательный ответ следует записывать с тремя значащими цифрами. Это относится и к случаю, когда результат получен с применением калькулятора.

5.3. Требования к оформлению

- 1. Условия задач в контрольной работе надо переписать полностью без сокращений. Для замечаний преподавателя на страницах тетради оставлять поля.
- 2. Решения задач следует сопровождать краткими, но исчерпывающими пояснениями. В тех случаях, когда возможно, дать рисунок, схему.
- 3. Числовые значения величин при подстановке их в расчетную формулу следует выражать только в единицах СИ. В виде исключения допускается выражать в любых, но одинаковых единицах числовые значения однородных величин, стоящих в числителе и знаменателе дроби и имеющих одинаковые степени.

6. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

1. Хямяляйнен, В. А. Теоретическая механика: учебное пособие / В. А. Хямяляйнен. — 3-е изд. — Кемерово: КузГТУ имени Т.Ф. Горбачева, 2020. — 226 с. — ISBN 978-5-00137-137-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/145146 (дата обращения: 10.09.2021). — Режим доступа: для авториз. пользователей. 2. Бутенин, Н. В. Курс теоретической механики: учебное пособие / Н. В. Бутенин, Я. Л. Лунц, Д. Р. Меркин. — 12-е изд., стер. — Санкт-Петербург: Лань, 2020. — 732 с. — ISBN 978-5-8114-5552-2. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/143116 (дата обращения: 10.09.2021). — Режим доступа: для авториз. пользователей.

3. Сидашов, А. В. Актуализированный курс теоретической механики : учебное пособие / А. В. Сидашов. — Ростов-на-Дону : РГУПС, 2020. — 160 с. — ISBN 978-5-88814-901-0. — Текст : электронный // Лань : электроннобиблиотечная система. — URL: https://e.lanbook.com/book/147360 (дата обращения: 10.09.2021). — Режим доступа: для авториз. пользователей. 4. Прасолов, С. Г. Механика. Теоретическая механика : учебное пособие / С. Г. Прасолов. — Тольятти : ТГУ, 2019. — 99 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/139662 (дата обращения: 15.09.2021). — Режим доступа: для авториз. пользователей.

Дополнительная литература:

- 1. Практикум по аналитической механике: учебное пособие / И. И. Галиев, М. Х. Минжасаров, В. М. Павлов, Е. А. Самохвалов. Омск: ОмГУПС, 2020. 27 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/165636 (дата обращения: 10.09.2021). Режим доступа: для авториз. пользователей. 2. Теоретическая механика. Динамика: учебное пособие / В. Б. Зиновьев, Л. И. Ким, А. М. Попов, А. С. Самошкин. Новосибирск: СГУПС, 2020. —
- 2. Георетическая механика. Динамика: учеоное пособие / В. Б. Зиновьев, Л. И. Ким, А. М. Попов, А. С. Самошкин. Новосибирск: СГУПС, 2020. 114 с. ISBN 978-5-00148-124-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/164630 (дата обращения: 10.09.2021). Режим доступа: для авториз. пользователей.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

Интернет-ресурсы:

http://www.biblioclub.ru/

http://www.diss.rsl.ru/

http://www.rucont.ru/

http://www.znanium.com/

http://www.book.ru

http://e.lanbook.com/

http://www.biblio-online.ru

http://ies.unitech-mo.ru/

http://unitech-mo.ru/

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: MSOffice

Информационные справочные системы: Электронные ресурсы образовательной среды Университета.