

		«УТВЕРЖДАЮ) >>
		И.о. проректор	a
		А.В.Троицки	й
«	>>	2023	Г.

ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «МЕТОДЫ И СПОСОБЫ ПРОЕКТИРОВАНИЯ ИС»

Направление подготовки: 09.03.02 Информационные системы и технологии

Направленность (профиль): высокопроизводительные вычислительные и

телекоммуникационные интеллектуальные системы и комплексы

Уровень высшего образования: бакалавриат

Форма обучения: очная, заочная

Рабочая программа является составной частью основной профессиональной проходит рецензирование образовательной программы И co основной профессиональной образовательной работодателей В составе программы. Рабочая программа актуализируется и корректируется ежегодно.

Автор: к.т.н., доц. Аббасова Т.С. Рабочая программа дисциплины: Методы и способы проектирования информационных систем и технологий – Королев МО: «Технологический университет», 2023.

Рецензент: д.т.н., проф. Артюшенко В.М.

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего профессионального образования (ФГОС ВО) по направлению подготовки бакалавров 09.03.02 «Информационные системы и технологии» и Учебного плана, утвержденного Ученым советом Технологического университета

Протокол № 9 от 11.04.2023 г.

Рабочая программа рассмотрена и одобрена на заседании кафедры:

i add ian iipdi pamma pa	семотрена и одо	opena na saec	equiliii itaqe	(PDI.
Заведующий кафедрой (ФИО, ученая степень, звание, подпись)	Артюшенко В.М. д.т.н. профессор			
Год утверждения (переутверждения)	2023	2024	2025	2026
Номер и дата протокола заседания кафедры	№12 от 05.04.2022			

Рабочая программа согласована:

Руководитель ОПОП к.т.н., *ЕМиу* доц. Е.Г. Макарова

Рабочая программа рекомендована на заседании УМС:

Год утверждения (переутверждения)	2023	2024	2025	2026
Номер и дата протокола заседания УМС	№5 от 11.04.2022 г			

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП

Целью изучения дисциплины является приобретение теоретических и практических навыков для использования в профессиональной деятельности знаний в области современных научных и практических методов проектирования и сопровождения информационных систем (ИС) различного масштаба для разных предметных областей для поддержки функционирования информационных систем.

В процессе обучения студент приобретает и совершенствует следующие компетенции.

профессиональные компетенции (ПК)

- Способен выполнять интеграцию программных модулей и компонент (ПК-2);
- Способен оценивать качество программного обеспечения, в том числе проведение тестирования и исследование результатов (ПК-3);
- Способен выполнять работы по обеспечению функционирования баз данных и обеспечению их информационной безопасности (ПК-4);
- Способен выполнять работы по созданию (модификации) и сопровождению информационных систем (ПК-5).

Основными задачами дисциплины являются:

- системное представление основных этапов проектирования информационных систем и технологий, основанного на объектном подходе;
- использование для проектирования информационных систем промышленных стандартизированных решений, опирающихся на современные технологии.

Показатели освоения компетенций отражают следующие индикаторы:

Трудовые действия:

- Проектирует программное обеспечение
- Владеет методами проведения тестирования программного обеспечения и статистическими методами оценки
- Имеет навыки обеспечения функционирования баз данных
- Владеет способами мониторинга информационных систем и их компонент с целью обнаружения неисправностей

Необходимые умения:

- Разрабатывает технические спецификации на программные компоненты и их взаимодействие
- Выявляет приоритетные функции для покрытия тестирования
- Умеет обеспечивать функционирование баз данных
- Умеет управлять доступом к программно-аппаратным средствам информационных служб инфокоммуникационной системы

Необходимые знания:

- Знает требования к программному обеспечению
- Знает методы оценки качества программного обеспечения
- Знает принципы построения баз данных информационных систем
- Знает принципы планирования разработки или восстановления требований к системе.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Методы и средства проектирования ИС» относится к части, формируемой участниками образовательных отношений, основной профессиональной образовательной программы подготовки бакалавров по направлению подготовки 09.03.02 «Информационные системы и технологии».

Дисциплина реализуется кафедрой информационных технологий систем и управляющих систем.

Изучение данной дисциплины базируется на ранее изученной дисциплине: «Теория информационных процессов и систем», «Основы машинного обучения» и компетенциях ОПК-8, ПК-2, ПК-3, ПК-5, ПК-11.

Основные положения дисциплины должны быть использованы в дальнейшем при выполнении выпускной квалификационной работы бакалавра.

3. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 8 зачетных единиц, 288 часов.

Таблица 1

Виды занятий	Всего	Семестр	Семестр	Семестр	Семестр		
	часов	третий	четверты й	шестой	седьмой		
Общая трудоемкость	288	144	144	108	180		
	ОЧНАЯ ФО	ОРМА ОБУ	чения				
Аудиторные занятия	112			48	64		
Лекции (Л)	48			16	32		
Практические занятия (ПЗ)	64			32	32		
Лабораторные работы (ЛР)	-			-	-		
Практическая подготовка	24			12	12		
Самостоятельная работа	176			60	116		
Курсовые работы (проекты)	-			-	-		
Контрольная работа, домашнее задание	+			+	+		
Текущий контроль знаний (7-8, 15-16 неделя)	Тест			+	+		
Вид итогового контроля	зачет / экзамен			зачет	экзамен		
3	АОЧНАЯ Ф	рорма об	УЧЕНИЯ				
Аудиторные занятия	40	20	20				
Лекции (Л)	16	8	8				
Практические занятия (ПЗ)	24	12	12				
Лабораторные работы (ЛР)	-	-	-				
Практическая подготовка	8	4	4				
Курсовые работы (проекты)	-	-	-				
Самостоятельная работа	248	124	124				
Контрольная работа, домашнее задание		+	+				
Вид итогового контроля	зачет / экзамен		экзамен				
ОЧНО-ЗАОЧНАЯ ФОРМА ОБУЧЕНИЯ: ОТСУТСТВУЕТ							

4. Содержание дисциплины

4.1. Темы дисциплины и виды занятий

Таблица 2

		1	1	таолица 2	1
Наименование разделов и тем	Лекции, час. очн/заочн/ очн-заочн, час	Практичес- кие занятия, очн/заочн/ очн-заочн, час	Занятия в интерак-тивной форме очн/заочн/ очн-заочн, час	Практичес кая подго- товка, час. очн/ заочн/ очн-заочн, час	Код компетен ций
Первый семестр					
Тема 1.1. Классификация методов и способов проектирования ИС. Модели ИС. Стандарты ИС.	6/2/-	10/6/-	4/2/-	4/1/-	ПК-2, ПК-3
Тема 1.2 . Представление данных и знаний в ИС	2/2/-	8/2/-	4/2/-	4/1/-	ПК-2, ПК-3
Тема 1.3. Структурный анализ и моделирование ИС	8/4/-	12/4/-	8/2/-	4/4/-	ПК-5
Итого по первому семестру:	16/4/-	32/12/-	16/6/-	12/4/-	
Второй семестр					
Тема 2.1. Объектно- ориентированный подход к проектированию информационных систем	24/4/-	24/10/-	4/3/-	6/2/-	ПК-4 ПК-5
Тема 2.2. Интегрированный подход к проектированию информационных систем	8/4/-	8/2/-	4/3/-	6/2/-	ПК-4 ПК-5
Итого по второму семестру:	32/4/-	32/12/-	16/6/-	12/4/-	
Итого:	48/16/-	64/24/-	32/12/-	24/8/-	

4.2. Содержание тем дисциплины

Первый семестр.

Тема 1.1. Классификация методов и способов проектирования ИС. Модели ИС. Стандарты ИС.

Анализ бизнес-процессов, их адаптация или пересмотр. Определение фактических потребностей в автоматизации. Подборка методологических, алгоритмических, программных, информационных, технологических технических решений или разработка специализированных решений. Внедрение алгоритмических, программных, информационных, методологических, технологических и технических решений на предприятии и обучение персонала его использованию. Средства защиты персонала, работающего со средствами вычислительной техники. Методы проектирования; концептуальное, логическое и физическое проектирование. Методы и способы организации метаинформации проекта ИС. Методы «снизу вверх» и «сверху вниз».

Концептуальные модели данных. Объектно-ориентированные и семантические модели (ERD, Entity-Relationship Diagrams). Понятие сущности. Атрибуты. Виды связей. Проектирование структуры базы данных. Модели жизненного цикла информационных систем. Каскадная модель жизненного цикла ИС. Поэтапная модель с промежуточным контролем. Спиральная модель. Модели концептуального уровня информационных систем.

Основные этапы проектирования ИС: приобретение; поставка; разработка; эксплуатация; сопровождение. Вспомогательные процессы: документирование; управление конфигурацией; обеспечение качества; разрешение проблем; аудит; аттестация; совместная оценка; верификация. Организационные процессы: создание инфраструктуры; управление; обучение; усовершенствование. Информационное, программное, техническое и технологическое обеспечение ИС. Базы данных как основы ИС. Совокупность всех допустимых значений атрибутов БД. Идентификаторы БД.

Стандарты в области информационных систем. ИСО (Международная организация по стандартизации), МЭК (Международная электротехническая комиссия), МСЭ (Международный союз электросвязи). Сектор МСЭ по телекоммуникациям (МСЭ Т). Общество Интернет (Internet Society), СЕН (Европейский комитет стандартизации) и СЕНЭЛЕК (Европейский комитет стандартизации в области электротехники), ЕКМА (Европейская ассоциация производителей компьютеров), ЕВОС (Европейские рабочие группы по открытым ЕТСИ (Европейский институт по стандартизации (Институт телекоммуникаций), **IEEE** инженеров ПО электротехнике электронике), Группа X/Ореп, организованная поставщиками компьютерной техники, OSF (Фонд открытого программного обеспечения), OMG (Группа объектного управления), NMF (Форум управления сетями) и др. ГОСТ Р ИСО/МЭК/ТО 10000.

Архитектуры информационных систем.

Тема 1.2. Представление данных и знаний в ИС

Логическая модель данных. Продукционная модель данных. Семантическая модель данных. Фреймовая модель данных. Правила построения моделей. Использование моделей в информационных системах поддержки принятия решений.

Тема 1.3. Структурный анализ и моделирование ИС

Основные понятия методологии структурного анализа и проектирования SADT (Structured Analysis and Design Technique). Структурный подход к проектированию ИС. Разбиение на уровни абстракции с ограничением числа элементов на каждом из уровней. Ограниченный контекст, включающий лишь существенные на каждом уровне детали. Дуальность данных и операций над ними. Использование строгих формальных правил записи; последовательное приближение к конечному результату. Модель, применяемая в методологии SADT (Structured Analysis & Design Technique). Модель, применяемая в методологии DFD (Data Flow Diagram). Основные понятия IDEF. Ramus –

инструмент реализации методологий структурного анализа и проектирования. Контекстная диаграмма и диаграммы декомпозиции. Диаграммы потоков данных DFD (Data Flow Diagrams). Элементы диаграмм. Порядок построения диаграмм.

Второй семестр

Тема 2.1. Объектно-ориентированный подход к проектированию информационных систем.

Сущность объектно-ориентированного подхода анализу К И проектированию Методология информационных систем. объектного проектирования CASE-средства на языке UML (UML-диаграммы). ДЛЯ реализации объектно-ориентированного подхода. Диаграммы вариантов использования (модели прецедентов). Диаграммы классов. Диаграммы Диаграммы композитной структуры. Диаграммы пакетов. взаимодействия. Диаграммы состояний. Элементы диаграмм и порядок их построения.

Тема 2.2. Интегрированный подход к проектированию информационных систем

Основные понятия И принципы интегрированного подхода информационных систем. CASE-средства для реализации проектированию интегрированного подхода. ARIS (Architecture of Integrated Information Systems) – методология и тиражируемый программный продукт для моделирования бизнеспроцессов организаций. Формирование нормативных документов на основании моделей ARIS (например, паспорт процесса, регламент процесса). Формирование аналитических отчётов на основании моделей ARIS. Интеграция ARIS Toolset с другими приложениями и базами данных. Формирование базы моделей ARIS на основании готовых спецификаций.

5. Перечень учебно-методического обеспечения для самостоятельной работы по дисциплине

1. Методические указания для обучающихся по освоению дисциплины.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Структура фонда оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине приведена в Приложении 1.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Голицына, О. Л. Информационные системы : учебное пособие / О. Л. Голицына, Н. В. Максимов, И. И. Попов. 2-е изд. Москва : ФОРУМ : ИНФРА-М, 2018. 448 с. ISBN 978-5-91134-833-5. Режим доступа: по подписке. URL: https://znanium.com/catalog/product/953245
- 2. Заботина, Н. Н. Проектирование информационных систем : учебное пособие / Н. Н. Заботина. Москва : ИНФРА-М, 2020. 331 с. ISBN 978-5-16-004509-2. Режим доступа: по подписке. URL: https://znanium.com/catalog/product/1036508

Дополнительная литература:

3. Абрамов, Г.В. Проектирование информационных систем: учебное пособие / Г.В. Абрамов, И.Е. Медведкова, Л.А. Коробова. - Воронеж: Воронежский государственный университет инженерных технологий, 2012. - 172 с. - ISBN 978-5-89448-953-7. Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=141626

Рекомендуемая литература:

1) Ипатова, Э.Р. Методологии и технологии системного проектирования информационных систем: учебник / Э.Р. Ипатова, Ю.В. Ипатов. — 2-е изд., стер. — Москва: Флинта, 2016. — 257 с.: табл., схем. — (Информационные технологии). — Режим доступа: по подписке. — URL: http://biblioclub.ru/index.php?page=book&id=79551 (дата обращения: 29.09.2020). — Библиогр.: с. 95-96. — ISBN 978-5-89349-978-0. — Текст: электронный.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. http://www.rusedu.info/ Сайт «Информационные технологии в образовании»
- 2. http://nit.miem.edu.ru/ Сайт «Международная студенческая школа-семинар «Новые информационные технологии»».

9. Методические указания для обучающихся по освоению дисциплины

Методические указания для обучающихся по освоению дисциплины (модуля) приведены в Приложении 2.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: OnlyOffice (для создания отчетов), Ramus.

Информационные справочные системы: не предусмотрено курсом данной дисциплины

Ресурсы информационно-образовательной среды Технологического университета:

Рабочая программа и методическое обеспечение по дисциплине «Методы и способы проектирования информационных систем и технологий».

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лекционные занятия:

- аудитория, оснащенная презентационной техникой (проектор, экран);
- комплект электронных презентаций / слайдов на темы:
 - 1) Подходы к проектированию информационных систем и технологий
 - 2) Модели жизненного цикла информационных систем
 - 3) CASE-технологии проектирования
 - 4) Методология SADT для проектирования информационных систем
- 5) Методология объектно-ориентированного подхода к проектированию информационных систем
 - 6) ИТ в профессиональной деятельности.

Практические занятия:

- учебный класс, оснащенный вычислительной техникой (ПК);
- рабочее место преподавателя, оснащенное компьютером с доступом в Интернет;
- рабочие места студентов, оснащенные компьютерами с доступом в Интернет.

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ «МЕТОДЫ И СПОСОБЫ ПРОЕКТИРОВАНИЯ ИНФОРМАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ»

(Приложение 1 к рабочей программе)

Направление подготовки: 09.03.02 Информационные системы и технологии

Направленность (профиль): высокопроизводительные вычислительные и

телекоммуникационные интеллектуальные системы и комплексы

Уровень высшего образования: бакалавриат

Форма обучения: очная, заочная

Королев 2023

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

№	Индекс	Содержание	Раздел	В результате изучения раздела дисциплины,			
п/п	компе-	компетенции	дисциплины,	обеспечивающего формирование компетенции (или ее			
	тенции	(или ее части)*	обеспечиваю- щий формиро-	части), обучающийся приобретает:			
			вание компе-	трудовые действия	необходимые умения	необходимые знания	
			тенции (или ее	денетыя	ymenn	Jimiin	
			части)				
1	ПК-2	Способен выполнять	Тема 1.1. Этапы автоматизации	Проектирует программное	Разрабаты вает	Знает требования к	
		интеграцию программных	информацион- ных процессов и	обеспечение	техническ	программному	
		модулей и	защиты		ие	обеспечению	
		компонент	персонала		специфика		
			Тема 1.2.		ции на		
			Подходы к		программн		
			построению и проектированию		ые		
			ИС		компонент		
			Тема 2.4 . Выбор		ыиих		
			варианта и		взаимодей		
			структуры ИТ		ствие		
			для автоматизации				
			работы				
			предприятия				
2	ПК-3	Способен	Тема 1.1. Этапы	Владеет	Выявляет	Знает	
		оценивать	автоматизации информационны	методами	приоритет	методы оценки	
		качество	х процессов и	проведения	ные	качества	
		програм-	защиты	тестирования	функции	программного	
		много	персонала	программног	для	обеспечения	
		обеспече-	Тема 1.2.	0	покрытия		
		ния, в том	Подходы к построению и	обеспечения	тестирован		
		числе	проектированию	И	ИЯ		
		проведение	ИС	статистическ			
		тестирова-	Тема 2.4 . Выбор	ИМИ			
		ния и	варианта и	методами			
		исследова-	структуры ИТ для	оценки			
		ние	автоматизации				
		результатов	работы				
			предприятия				
3	ПК-4	Способен	Тема 1.4.	Имеет	Умеет	Знает	
		выполнять	Модели и	навыки	обеспечива	принципы	
		работы по	методы	обеспечения	ТЬ	построения баз	
		обеспече-	проектирования	функциониро	функциони	данных	
		нию	ИС Тема 2.1.	вания баз	рование	информацион-	
		функционир	Методологии	данных	баз данных	ных систем	
		ования баз	структурного	данных	оаз дапных	11011 011010111	
		данных и	анализа и				
		обеспече-	проектирования				
		нию их	ИС Тема 2.2.				
		информацио	Методологии				
		нной	объектно-				
	<u> </u>		I	<u> </u>	<u> </u>		

		безопас- ности	ориентированног о анализа и проектирования ИС			
4	ПК-5	Способен выполнять работы по созданию (модификац ии) и сопровожде нию информацио нных систем	Тема 2.1. Методологии структурного анализа и проектирования ИС Тема 2.2. Методологии объектно- ориентированног о анализа и проектирования ИС	Владеет способами мониторинга информационн ых систем и их компонент с целью обнаружения неисправно- стей	Умеет управлять доступом к программно - аппаратным средствам информацио нных служб инфокомму никационно й системы	Знает принципы планирования разработки или восстановления требований к системе

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Код компетенции	Инструменты, оценивающие сформированность компетенции	Показатель оценивания компетенции	Критерии оценки
ПК-2	Исследование и представление о нем в презентационной форме	А) полностью сформирована (компетенция освоена на высоком уровне) – 5 баллов Б) частично сформирована: •компетенция освоена на продвинутом уровне – 4 балла; •компетенция освоена на базовом уровне – 3 балла; В) не сформирована (компетенция не освоена) – 2 и менее баллов	Проводится устно с использованием мультимедийных систем, а также с использованием технических средств Время, отведенное на процедуру – 10 - 15 мин. Неявка – 0. Критерии оценки: 1.Соответствие представленной презентации заявленной тематике (1 балл). 2.Качество источников и их количество при подготовке доклада и разработке презентации (1 балл). 3.Владение информацией и способность отвечать на вопросы аудитории (1 балл). 4.Качество самой представленной презентации (1 балл). 5.Оригинальность подхода и всестороннее раскрытие выбранной тематики (1 балл). Максимальная сумма баллов - 5 баллов.
ПК-3	Контрольная работа	А) полностью сформирована (компетенция освоена на высоком уровне) – 5 баллов Б) частично сформирована: •компетенция освоена на продвинутом уровне – 4 балла; •компетенция освоена на базовом уровне – 3 балла; В) не сформирована (компетенция не освоена) – 2 и менее баллов	1. Проводится в форме письменной работы 2. Время, отведенное на процедуру – семестр. Неявка на защиту контрольной работы – 0. Критерии оценки: 1. Соответствие содержания контрольной работы заявленной тематике (1 балл). 2. Качество источников и их количество при подготовке работы (0,5 балл). 3. Владение информацией и способность отвечать на вопросы аудитории (1 балл). 4. Качество самой представленной работы (1 балл). 5. Использование специализированного программного обеспечения (0,5 балл). 6. Оригинальность подхода и всестороннее раскрытие выбранной тематики (1 балл).

			Максимальная сумма баллов - 5баллов.
ПК-4	Письменное задание	А) полностью сформирована (компетенция освоена на высоком уровне) – 5 баллов Б) частично сформирована: •компетенция освоена на продвинутом уровне – 4 балла; •компетенция освоена на базовом уровне – 3 балла; В) не сформирована (компетенция не освоена) – 2 и менее баллов	1. Проводится в форме письменной работы 2. Время, отведенное на процедуру – 10 - 15 мин. Неявка – 0. Критерии оценки: 1. Соответствие ответа заявленной тематике (0-5 баллов). Максимальная сумма баллов - 5 баллов. Результаты оценочной процедуры представляются обучающимся в срок не позднее 1 недели после проведения процедуры – для текущего контроля. Оценка проставляется в электронный журнал.
ПК-5	Доклад в форме презентации	А) полностью сформирована (компетенция освоена на высоком уровне) — 5 баллов Б) частично сформирована: •компетенция освоена на продвинутом уровне — 4 балла; •компетенция освоена на базовом уровне — 3 балла; В) не сформирована (компетенция не освоена) — 2 и менее баллов	Проводится устно с использованием мультимедийных систем, а также с использованием технических средств Время, отведенное на процедуру – 10 - 15 мин. Неявка – 0. Критерии оценки: 1.Соответствие представленной презентации заявленной тематике (1 балл). 2.Качество источников и их количество при подготовке доклада и разработке презентации (1 балл). 3.Владение информацией и способность отвечать на вопросы аудитории (1 балл). 4.Качество самой представленной презентации (1 балл). 5.Оригинальность подхода и всестороннее раскрытие выбранной тематики (1 балл). Максимальная сумма баллов - 5 баллов.
ОПК-6	Реферат	А) полностью сформирована (компетенция освоена на высоком уровне) – 5 баллов Б) частично	Проводится в письменной форме Критерии оценки: 1.Соответствие содержания реферата заявленной тематике (1 балл). 2.Качество источников и их

сформирована:	количество при подготовке работы
сформирована:	(1 балл).
•компетенция	` '
освоена на	3.Владение информацией и
	способность отвечать на вопросы
продвинутом	аудитории (1 балл).
уровне – 4 балла;	4. Качество самой представленной
•компетенция	работы (1 балл).
освоена на базовом	5. Оригинальность подхода и
уровне – 3 балла;	всестороннее раскрытие выбранной
В) не	тематики (1 балл).
1	Максимальная сумма баллов - 5
сформирована	баллов.
(компетенция не	
освоена) – 2 и	
менее баллов	

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерная тематика исследований и представления о них в презентационной форме:

- 1. Этапы процесса проектирования информационных систем.
- 2. Роль и место ИТ в развитии современных бизнес-процессов.
- 3. Этапы развития ИТ.
- 4. Основные подходы к классификации ИТ.
- 5. Обзор базовых ИТ в экономике и управлении технологий текстовой, табличной и графической обработки информации, технологий ведения баз данных, технологий мультимедиа, гипертекстовых и сетевых технологий.
- 6. Классификация ИТ по базовой роли; по виду обрабатываемой информации; по типу пользовательского интерфейса; по уровню решаемых задач управления; по обслуживаемым предметным областям.
 - 7. Принципы и критерии оценки различных вариантов внедрения ИТ.
 - 8. Информационные технологии и системы автоматизированного офиса.
 - 9. Информационные технологии и системы космических корпораций.
 - 10. Информационные технологии и системы строительных организаций.
- 11. Информационные технологии и системы дошкольных бюджетных образовательных учреждений.
- 12. Информационные технологии и системы школьных бюджетных образовательных учреждений.
- 13. Информационные технологии и системы коммерческих образовательных учреждений.
 - 14. Информационные технологии и системы высших учебных заведений.
- 15. Информационные технологии и системы Технологического университета.
 - 16. Информационные технологии и системы предприятий автосервиса.

- 17. Информационные технологии и системы организаций общественного питания.
 - 18. Информационные технологии и системы ресторанного сервиса.
 - 19. Информационные технологии и системы конструкторских бюро.
- 20. Информационные технологии и системы крупных машиностроительных организаций.
- 21. Информационные технологии и системы нефтедобывающих предприятий.
- 22. Информационные технологии и системы деревообрабатывающих предприятий.
 - 23. Информационные технологии и системы бухгалтерского учета.
 - 24. Геоинформационные технологии и системы
- 25. Организация и поддержка коммуникационных процессов внутри организации и с внешней средой на базе компьютерных сетей и других современных средств передачи и обработки информации.

Примерная тематика реферата (доклада):

- 1. Объектно-ориентированный подход к анализу и проектированию информационных систем.
- 2. UML унифицированный язык объектно-ориентированного моделирования информационных систем.
 - 3. Диаграммы вариантов использования (модели прецедентов).
 - 4. Диаграммы классов.
 - 5. Диаграммы взаимодействия.
- 6. Предпроектное обследование предприятия с целью получения комплексного описания предприятия и его бизнеса.
 - 7. Функциональная и информационная модели предприятия,
 - 8. Взаимосвязи, необходимые для создания информационной системы.
- 9. Основные приемы и законы создания и чтения чертежей и документации по аппаратным и программным компонентам информационных систем.
 - 10. Техническое проектирование информационной системы.
 - 11. Рабочее проектирование информационной системы.
- 12. Оценка надежности и качества функционирования информационной системы.
- 13. системное представление основных этапов проектирования информационных систем и технологий, основанного на объектном подходе.
- 14. Использование промышленных стандартизированных решений, опирающихся на современные технологии.
- 15. Структура, состав и свойства информационных процессов, систем и технологий.
 - 16. Методы анализа информационных систем.
 - 17. Модели представления проектных решений информационных систем.
 - 18. Модели конфигурации информационных систем.

- 19. Состав, структура, принципы реализации и функционирования информационных технологий, используемых при создании информационных систем.
 - 20. Базовые информационные технологии.
 - 21. Прикладные информационные технологии.
 - 22. Инструментальные средства информационных технологий.
 - 23. Классификация информационных систем.
 - 24. Классификация информационных технологий.
 - 25. Структуры, конфигурации информационных технологий.

Примерная тематика письменного задания:

- 1. Какую информацию о разрабатываемой системе принято изображать на диаграммах классов?
 - 2. Дайте определение ассоциации. Чем она отличается от наследования?
- 3. Какие отношения между классами не переходят в связи между экземплярами?
 - 4. Что такое конец ассоциации?
 - 5. Чем однонаправленная ассоциация отличается от двунаправленной?
 - 6. Приведите свой пример *n*-арной ассоциации.
- 7. Расскажите о соображениях по именованию концов ассоциаций. Приведите примеры для бинарных ассоциаций, когда именование концов облегчает чтение диаграммы, и пример, когда это оказывается избыточным.
- 8. Как, на ваш взгляд, сочетаются имя ассоциации и имена ее концов на одной диаграмме? Приведите собственный пример для подтверждения своего мнения.
 - 9. Зачем нужны классы-ассоциации? Постройте собственный пример.
- 10. Дайте определение агрегирования. Приведите примеры различных семантик агрегирования.
- 11. Агрегирование является: свойством ассоциации, свойством роли, отдельным отношением между классами UML?
- 12. Может ли у двух и более концов ассоциации быть свойство агрегирования?
- 13. Возможна ли ситуация, когда класс агрегируется несколькими другими классами, но тем не менее любой его экземпляр агрегируется только одним объектом? Приведите пример.
- 14. Может ли класс агрегироваться несколькими другими классами, и при этом его экземпляр также будет входить в несколько объектов? Верно ли то же утверждение про композицию? Приведите содержательный пример.
 - 15. Чем агрегирование похоже на наследование и чем отличается?
 - 16. Что такое композиция? Приведите пример.
- 17. Попробуйте расширить UML для выражения связи, которая существует между классом и вложенным в него классом (nested -класс языка Java).
 - 18. Что такое UML -пакет?

- 19. Чем пакеты UML близки к проектам и solutions Microsoft Visual Studio?
- 20. Могут ли пакеты содержать элементы UML -модели, отличные от других пакетов и классов?
- 21. Что такое зависимость между пакетами? Может ли это отношение использоваться для других UML -элементов?
 - 22. Дайте определение объекта.
- 23. Расскажите о правилах изображения имен у сущностей UML, соответствующих каким-либо экземплярам (в частности, объектам классов).
 - 24. Что такое связи между объектами?
 - 25. Что такое кооперация? Приведите свой пример.
 - 26. Приведите примеры альтернативных определений кооперации.
- 27. На каких диаграммах может использоваться кооперация? Приведите собственные примеры.
- 28. Что такое совместимость фактических и формальных параметров кооперации?
 - 29. Расскажите о правилах изображения имен ролей.
- 30. Что такое диаграммы конечных автоматов? Приведите свой собственный пример.

Примерная тематика контрольных работ:

Первый семестр

- 1. Моделирование установки компонентов аппаратного и программного обеспечения компьютера в среде Ramus.
- 2. Моделирование оформления заказа на изделие предприятия в среде Ramus.
 - 3. Моделирование продаж партии изделий со склада в среде Ramus.
- 4. Моделирование процессов по выплате страхового возмещения в среде Ramus.
 - 5. Обработка статуса заказов на доставку покупок в среде Ramus.
- 6. Обработка денежных переводов в банковской системе России в среде Ramus.
- 7. Моделирование процесса проектирования ЛВС для поддержки ИС в среде Ramus.
- 8. Моделирование процесса принятия решения о движении автомобиля на перекрестке в среде Ramus.
 - 9. Обработка статуса заказов автозапчастей в среде Ramus.
- 10. Моделирование подготовки ракеты-носителя на стартовом комплексе в среде Ramus.
 - 11. Обработка статуса заказов автозапчастей в среде Ramus.
 - 12. Обработка статуса заказов на доставку мебели в среде Ramus.
- 13. Обработка статуса заказов на доставку вычислительной техники в среде Ramus.

- 14. Моделирование процесса выплаты стипендий (обычных, повышенных, отсутствия стипендии) в среде Ramus.
- 15. Моделирование процесса выплаты зарплаты, надбавки к зарплате, премии, иных начислений, входящих в основную и дополнительную зарплату, налогов на зарплату в среде Ramus.
- 16. Моделирование процесса локализации программного продукта в среде Ramus.
 - 15. Моделирование процесса приема растаможенного груза в среде Ramus.
 - 18. Обработка статуса туристических заявок в среде Ramus.
 - 19. Обработка статуса заявок на ипотечное кредитование в среде Ramus.
 - 20. Обработка статуса заказов электронных устройств в среде Ramus.
- 21. Обработка денежных переводов в банковской системе Европы в среде Ramus.
- 22. Моделирование процесса распределения ресурсов космического предприятия в среде Ramus.
- 23. Моделирование процесса распределения ресурсов нефтедобывающего предприятия в среде Ramus.
- 24. Моделирование процесса распределения ресурсов машиностроительного предприятия в среде Ramus.
- 25. Моделирование процесса распределения ресурсов строительной организации в среде Ramus.

Второй семестр

- 1. Построение UML-диаграмм для информационной системы поддержки принятия решений на машиностроительном предприятии.
- 2. Построение UML-диаграмм для информационной системы строительной организации.
- 3. Построение UML-диаграмм для информационной системы автосервисов города.
- 4. Построение UML-диаграмм для информационной системы предприятия, занимающегося добычей и переработкой нефти.
- 5. Построение UML-диаграмм для информационной системы персональных данных.
- 6. Построение UML-диаграмм для информационной системы технического учета аппаратуры сети датчиков.
- 7. Построение UML-диаграмм для информационной системы экспертной оценки, анализа, отбора и мониторинга инновационных ИТ-проектов.
- 8. Построение UML-диаграмм для информационной системы железнодорожной пассажирской станции.
- 9. Построение UML-диаграмм для информационной системы диагностики оборудования локальной вычислительной сети на основе электрической среды передачи.
- 10. Построение UML-диаграмм для информационной системы диагностики оборудования локальной вычислительной сети на основе оптической среды передачи.

- 11. Построение UML-диаграмм для информационной системы диагностики оборудования систем управления технологическим процессом.
- 12. Построение UML-диаграмм для веб-ориентированной информационной системы (сайт).
- 13. Построение UML-диаграмм для информационной системы производства устройств контроля тока и напряжения.
- 14. Построение UML-диаграмм для информационной системы производства телеметрической аппаратуры.
- 15. Построение UML-диаграмм для информационной системы компании по предоставлению услуг сотовой связи.
- 16. Построение UML-диаграмм для информационной системы технического учета кабелей магистральной волоконно-оптической сети.
- 17. Построение UML-диаграмм для информационной системы технического учета оборудования беспроводной локальной вычислительной сети предприятия.
 - 18. Построение UML-диаграмм для информационной системы склада.
- 19. Построение UML-диаграмм для информационной системы агентства по продаже недвижимости.
- 20. Построение UML-диаграмм для информационной системы управления роботами и робототехническими комплексами.
- 21. Построение UML-диаграмм для информационной системы учета электроэнергии в многоквартирных и частных домах.
- 22. Построение UML-диаграмм для информационной системы машиностроительного предприятия.
- 23. Построение UML-диаграмм для информационной системы высшего учебного заведения.
- 24. Построение UML-диаграмм для информационной системы для обработки больших массивов информации.
- 25. Построение UML-диаграмм для информационной системы технического учета аппаратуры связи

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Формой контроля знаний по дисциплине «Методы и средства проектирования информационных систем и технологий» являются две текущие аттестации в виде тестов и промежуточные аттестации в виде зачета в конце первого семестра и экзамена в конце второго семестра.

Неделя текуще го контро ля	Вид оценочного средства	Код компетен- ций, оценивающ ий знания, умения, навыки	Содержание оценочного средства	Требования к выполнению	Срок сдачи (неделя семестра)	Критерии оценки по содержанию и качеству с указанием баллов
Согла- сно графи- ка учеб- ного процес са	тестирование	ПК-2 ПК-3 ПК-4 ПК-5	25 вопросов	Компьютерное тестирование; время отведенное на процедуру -30 минут	Результаты тестировани я предоставля ются в день проведения процедуры	Критерии оценки определяются процентным соотношением. Не явка -0 Удовлетворительно от 51% правильных ответов. Хорошо - от 70%. Отлично – от 90%.
Согла- сно графи- ка учеб- ного процес са	тестирование	ПК-2 ПК-3 ПК-4 ПК-5	25 вопросов	Компьютерное тестирование; время отведенное на процедуру – 30 минут	Результаты тестировани я предоставля ются в день проведения процедуры	Критерии оценки определяются процентным соотношением. Не явка -0 Удовлетворительно - от 51% правильных ответов. Хорошо - от 70%. Отлично – от 90%. Максимальная оценка – 5 баллов.
Согла- сно графи- ка учеб- ного процес са	зачет	ПК-2 ПК-3 ПК-4	2 практичес- ких задания	Зачет проводится в письменной форме, путем ответа на вопрос и решения практического задания. время отведенное на процедуру — 0,25 часа на студента.	Результаты предоставля ются в день проведения зачета	Критерии оценки: «Зачтено»: • знание основных понятий предмета; • умение использовать и применять полученные знания на практике; • работа на семинарских занятиях; • знание основных научных теорий, изучаемых предметов; • ответ на

	1	1	ı	,	1	T
						вопросы билета. «Не зачтено»:
						 неумение использовать и применять полученные знания на практике; не работал на семинарских занятиях; не отвечает на вопросы.
Согла- сно графи- ка учеб- ного процес са	экзамен	ПК-2 ПК-3 ПК-4 ПК-5	2 вопроса 1 практи- ческое задание	Экзамен проводится в письменной форме, путем ответа на вопросы и решения практического задания. Время, отведенное на процедуру – 0,35 часа на студента	Результаты предоставля ются в день проведения зачета	Критерии оценки: «Отлично»:

			«Удовлетвори-
			тельно»:
			• демонстриру
			ет частичные
			знания по темам
			дисциплин;
			• незнание
			неумение
			использовать и
			применять
			полученные
			знания на
			практике;
			• не работал на
			практических
			занятиях;
			«Неудовлетвори-
			тельно»:
			• демонстриру
			ет частичные
			знания по темам
			дисциплин;
			• незнание
			основных понятий
			предмета;
			• неумение
			использовать и
			применять
			полученные
			знания на
			практике;
			• не работал на
			практических
			занятиях;
			• не отвечает
			на вопросы.

* Итоговое начисление баллов по дисциплине осуществляется в соответствии с разработанной и внедренной балльно-рейтинговой системой контроля и оценивания уровня знаний и внеучебной созидательной активности обучающихся.

4.1. Типовые вопросы, выносимые на тестирование

Тесты используются в режиме промежуточного контроля. По форме заданий выбраны закрытые тесты (с выборочным ответом). Каждому вопросу соответствует один вариант ответа.

1) Информационная система – это по ГОСТ Р 50922-2006

- комплекс взаимосвязанных научных, технологических, инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику; методы организации и взаимодействия с людьми и производственным оборудованием, их практические приложения; а также связанные со всем этим социальные, экономические и культурные проблемы
- система информационного обслуживания работников управленческих служб, выполняющая технологические функции по накоплению, хранению, передаче и обработке информации
- совокупность содержащейся в базах данных информации и обеспечивающих ее обработку информационных технологий и технических средств
- системно-организованная последовательность операций, выполняемых над информацией с использованием средств и методов автоматизации

2) Какой моделью является модель функционирования предприятия за определенный промежуток времени?

- Имитационной
- Физической
- Математической
- Логической

3) Облачное хранилище данных – это:

- подготовка информации к хранению в оптимальной форме для реализации запроса, необходимого для принятия решений
- предметно-ориентированная информационная база данных, специально разработанная и предназначенная для подготовки отчётов и бизнес-анализа с целью поддержки принятия решений в организации
- модель онлайн-хранилища, в котором данные хранятся на многочисленных, распределённых в сети серверах, предоставляемых в пользование клиентам, в основном, третьей стороной
- перемещение информации от источников данных в отдельную БД, приведение их к единому формату

4) Какие методы позволяют моделировать поведение любых систем?

• имитационное моделирование

- линейное программирование
- сетевые методы планирования
- сетевые методы управления

5) В имитационной модели можно замедлять или ускорять изучаемое явление?

- Да
- Нет
- можно только ускорять
- можно только замедлять

6) Структурный подход к проектированию информационной системы – это

- индивидуальное проектирование, когда проектные решения разрабатываются «с нуля» в соответствии с требованиями к ИС;
- типовое проектирование, предполагающего сборку или конфигурацию ИС из готовых типовых компонентов
- раздельное построение модели функций (чаще всего диаграммы потоков данных) и модели данных (чаще всего диаграммы "сущность связь")
- набор моделей, связанных с понятием класса/объекта, объединяющего данные (состояние) и поведение

7) Объектно-ориентированный подход к проектированию информационной системы – это

- индивидуальное проектирование, когда проектные решения разрабатываются «с нуля» в соответствии с требованиями к ИС;
- типовое проектирование, предполагающего сборку или конфигурацию ИС из готовых типовых компонентов
- раздельное построение модели функций (чаще всего диаграммы потоков данных) и модели данных (чаще всего диаграммы "сущность связь")
- набор моделей, связанных с понятием класса/объекта, объединяющего данные (состояние) и поведение

8) Какая из нижеперечисленных моделей используется в структурном подходе для проектирования информационных систем?

- Диаграмма объектов
- Диаграмма классов
- диаграмма потоков данных / модель бизнес-процессов (Data Flow Diagram/Business Process Model)
- Диаграмма кооперации

9) Какая из нижеперечисленных моделей используется в объектноориентированном подходе для проектирования информационных систем?

• диаграмма классов

- диаграмма потоков данных/модель бизнес-процессов (Data Flow Diagram/Business Process Model);
- диаграмма "сущность связь" (Entity Relationship Diagram);
- диаграмма переходов состояний (State Transition Diagram);

10) К корпоративным информационным системам относятся

- 1С-Предприятие
- PIC Holding
- Project Expert
- Microsoft Project

• 11) Целью автоматизации финансовой деятельности является:

повышение квалификации персонала устранение рутинных операций и автоматизированная подготовка финансовых документов снижение затрат автоматизация технологии выпуска продукции приобретение нового оборудования

• 12) Цель информационного обеспечения определяется:

субъектом информационного обеспечения задачами организации руководителем организации информационными потребностями указами правительства

13) Что означает – систематизированное (структурированное) хранилище информации?

- База данных
- Хранилище
- Склад информации
- База

14) В каких случаях, и с какой целью создаются базы данных?

- Для удобства набора текста
- Когда необходимо быстро найти какой-либо файл на компьютере
- Когда винчестер компьютера имеет небольшой размер свободной памяти
- Когда необходимо отследить, проанализировать и хранить информацию за определенный период времени

15) Что означает — программа или комплекс программ служащих для полнофункциональной работы с данными (СУБД)?

- Система управления базой доступа
- Система управления базами данных
- Система упрощенного базового доступа
- Совокупность управляющих баз данных

16) Какой тип отношений нельзя устанавливать между двумя таблицами при их связывании?

- Один к одному
- Один ко многим
- Многие ко многим
- Многие к одному

17) Назовите одну из простейших систем управления реляционными базами данных, которая входит в пакет LibreOffice?

- Base
- Writer
- Calc
- Impress

18) С каким расширением создаются проекты баз данных в программе LibreOffice?

- .bmp
- .odb
- avi
- .com

19) Объектами базы данных в LibreOffice Base являются?

- Таблицы и запросы
- Формы и отчеты
- Макросы
- Подходят все перечисленные ответы

20) Что называется основным, обязательным объектом файла базы данных, в котором хранится информация в виде однотипных записей, которые в свою очередь состоят из совокупностей отдельных полей?

- Запросы
- Таблица
- Формы и отчеты
- Макросы

21) Назовите способы создания таблиц в LibreOffice Base?

- В режиме конструктора, при помощи мастера, путем введения данных
- В режиме проектировщика, мастера, планировщика
- В режиме планировщика, конструктора, проектировщика
- В режиме мастера форм, планировщика заданий

26. Какие предусмотрены в **LibreOffice Base** типы данных?

- Числовой, текстовый и денежный
- Дата/время, поле МЕМО, счетчик и логический
- Поле объекта OLE
- Подходят все перечисленные ответы

22) Сколько символов может вмещать «Имя поля»?

- 64
- 128

- 32
- 30

23) Какое «свойство» поля окна «Таблицы» указывает размеры текстовых полей определенным количеством символов, ограничивает числовые поля определенным интервалом значений?

- Формат поля
- Число десятичных знаков
- Размер поля
- Маска ввода

24) Какое «свойство» поля окна «Таблицы» задает определенный формат отображения дат и чисел?

- Размер поля
- Число десятичных знаков
- Маска ввода
- Формат поля

25) Какое «свойство» поля окна «Таблицы» устанавливает число знаков после запятой в полях типа Числовой и Денежный

- Число десятичных знаков
- Формат поля
- Размер поля
- Маска ввода

2 тестирование

1) Объект (object) информационной системы – это

- сущность, обладающая уникальностью и инкапсулирующая в себе состояние и поведение.
- описание множества объектов с общими атрибутами, определяющими состояние, и операциями, определяющими поведение
- именованное множество операций, определяющее средства взаимодействия с пользователем и набор услуг, которые могут быть запрошены пользователем и предоставлены поставщиком услуг
- совокупность объектов, которые взаимодействуют для достижения некоторой цели.

2) Класс (class) информационной системы – это

- описание множества объектов с общими атрибутами, определяющими сущность, обладающая уникальностью и инкапсулирующая в себе состояние и поведение.
- состояние, и операциями, определяющими поведение
- именованное множество операций, определяющее средства взаимодействия с пользователем и набор услуг, которые могут быть запрошены пользователем и предоставлены поставщиком услуг
- совокупность объектов, которые взаимодействуют для достижения некоторой цели.

3) Интерфейс (interface) информационной системы – это

- сущность, обладающая уникальностью и инкапсулирующая в себе состояние и поведение.
- описание множества объектов с общими атрибутами, определяющими состояние, и операциями, определяющими поведение
- совокупность объектов, которые взаимодействуют для достижения некоторой цели.
- именованное множество операций, определяющее средства взаимодействия с пользователем и набор услуг, которые могут быть запрошены пользователем и предоставлены поставщиком услуг

4) Кооперация (collaboration) информационной системы – это

- совокупность объектов, которые взаимодействуют для достижения некоторой цели.
- сущность, обладающая уникальностью и инкапсулирующая в себе состояние и поведение.
- описание множества объектов с общими атрибутами, определяющими состояние, и операциями, определяющими поведение
- именованное множество операций, определяющее средства взаимодействия с пользователем и набор услуг, которые могут быть запрошены пользователем и предоставлены поставщиком услуг

5) Действующее лицо (actor) информационной системы – это

- сущность, находящаяся вне моделируемой системы и непосредственно взаимодействующая с ней
- модульная часть системы с четко определенным набором требуемых и предоставляемых интерфейсов
- элемент информации, который используется или порождается в процессе разработки программного обеспечения, или физическая единица реализации, получаемая из элемента модели (например, класса или компонента)
- вычислительный ресурс, на котором размещаются и при необходимости выполняются артефакты

6) Компонент (component) информационной системы – это

- модульная часть системы с четко определенным набором требуемых и предоставляемых интерфейсов
- сущность, находящаяся вне моделируемой системы и непосредственно взаимодействующая с ней
- элемент информации, который используется или порождается в процессе разработки программного обеспечения, или физическая единица реализации, получаемая из элемента модели (например, класса или компонента)
- вычислительный ресурс, на котором размещаются и при необходимости выполняются артефакты

7) Артефакт (artifact) информационной системы – это

- элемент информации, который используется или порождается в процессе разработки программного обеспечения, или физическая единица реализации, получаемая из элемента модели (например, класса или компонента)
- сущность, находящаяся вне моделируемой системы и непосредственно взаимодействующая с ней
- (?) модульная часть системы с четко определенным набором требуемых и предоставляемых интерфейсов
- вычислительный ресурс, на котором размещаются и при необходимости выполняются артефакты

8) Узел (node) информационной системы – это

- вычислительный ресурс, на котором размещаются и при необходимости выполняются артефакты
- сущность, находящаяся вне моделируемой системы и непосредственно взаимодействующая с ней
- модульная часть системы с четко определенным набором требуемых и предоставляемых интерфейсов
- элемент информации, который используется или порождается в процессе разработки программного обеспечения, или физическая единица реализации, получаемая из элемента модели (например, класса или компонента)

9) Состояние (state) информационной системы – это

- период в жизненном цикле объекта, находясь в котором объект удовлетворяет некоторому условию и осуществляет собственную деятельность или ожидает наступления некоторого события
- частный случай состояния, который характеризуется продолжительными (по времени) не атомарными вычислениями
- примитивное атомарное вычисление
- множество сценариев, объединенных по некоторому критерию и описывающих последовательности производимых системой действий, доставляющих значимый для некоторого действующего лица результат

10) Деятельность (activity) в информационной системе – это

- период в жизненном цикле объекта, находясь в котором объект удовлетворяет некоторому условию и осуществляет собственную деятельность или ожидает наступления некоторого события
- частный случай состояния, который характеризуется продолжительными (по времени) не атомарными вычислениями
- примитивное атомарное вычисление
- множество сценариев, объединенных по некоторому критерию и описывающих последовательности производимых системой действий, доставляющих значимый для некоторого действующего лица результат

11) Действие (action) в информационной системе – это

- период в жизненном цикле объекта, находясь в котором объект удовлетворяет некоторому условию и осуществляет собственную деятельность или ожидает наступления некоторого события
- частный случай состояния, который характеризуется продолжительными (по времени) не атомарными вычислениями
- примитивное атомарное вычисление
- множество сценариев, объединенных по некоторому критерию и описывающих последовательности производимых системой действий, доставляющих значимый для некоторого действующего лица результат

12) Вариант использования (use case) в информационной системе – это

- период в жизненном цикле объекта, находясь в котором объект удовлетворяет некоторому условию и осуществляет собственную деятельность или ожидает наступления некоторого события
- частный случай состояния, который характеризуется продолжительными (по времени) не атомарными вычислениями
- примитивное атомарное вычисление
- множество сценариев, объединенных по некоторому критерию и описывающих последовательности производимых системой действий, доставляющих значимый для некоторого действующего лица результат

13) Технология эффективного управления и мониторинга процессов деятельности предприятия - это

- OLAP-технология
- технология Data Mining
- CASE-технология
- технология WorkFlow

14) Диаграмма классов (class diagram) служит для

- определения взаимодействия объектов в динамике
- определения границы и контекста моделируемой предметной области на ранних этапах проектирования и формирования общих требований к поведению проектируемой системы
- определения статической структуры модели системы в терминологии классов объектно-ориентированного программирования
- отображения перехода объекта из одного состояния в другое

15) Диаграмма состояний показывает

- границы и контекст моделируемой предметной области на ранних этапах проектирования и общие требования к поведению проектируемой системы
- переход объекта из одного состояния в другое
- статическую структуру модели системы в терминологии классов объектноориентированного программирования
- взаимодействие объектов в динамике

16) Диаграмма прецедентов служит для

- определения границы и контекста моделируемой предметной области на ранних этапах проектирования и формирования общих требований к поведению проектируемой системы
- определения статической структуры модели системы в терминологии классов объектно-ориентированного программирования
- перехода объекта из одного состояния в другое
- взаимодействия объектов в динамике

17) Диаграмма последовательностей показывает

- взаимодействие объектов в динамике
- границы и контекст моделируемой предметной области на ранних этапах проектирования и общие требования к поведению проектируемой системы
- статическую структуру модели системы в терминологии классов объектноориентированного программирования
- переход объекта из одного состояния в другое

18) Диаграмма взаимодействия показывает

- поток сообщений между объектами системы и основные ассоциации между ними и по сути, как уже было сказано выше, является альтернативой диаграммы последовательностей
- алгоритм решения некоторой задачи
- роли, которые играют участвующие во взаимодействии элементы (классы и ассоциации)
- графическое представление инфраструктуры, на которую будет развернуто приложение

19) Диаграмма активности (деятельности) отражает

- алгоритм решения некоторой задачи
- поток сообщений между объектами системы и основные ассоциации между ними и по сути, как уже было сказано выше, является альтернативой диаграммы последовательностей
- графическое представление инфраструктуры, на которую будет развернуто приложение
- роли, которые играют участвующие во взаимодействии элементы (классы и ассоциации)

20) Диаграмма развертывания (размещения) отражает

- графическое представление инфраструктуры, на которую будет развернуто приложение
- алгоритм решения некоторой задачи
- поток сообщений между объектами системы и основные ассоциации между ними и по сути, как уже было сказано выше, является альтернативой диаграммы последовательностей
- роли, которые играют участвующие во взаимодействии элементы (классы и ассоциации)

21) Диаграмма кооперации отражает

- роли, которые играют участвующие во взаимодействии элементы (классы и ассоциации)
- графическое представление инфраструктуры, на которую будет развернуто приложение
- алгоритм решения некоторой задачи
- поток сообщений между объектами системы и основные ассоциации между ними и по сути, как уже было сказано выше, является альтернативой диаграммы последовательностей
- 22) Условное обозначение соответствует анонимному объекту, образуемому на основе класса С
 - / R : C
 - C:
 - / C
 - · C
- 23) Условное обозначение соответствует анонимному объекту, играющему роль С
 - / R : C
 - C:
 - : C
 - / C
- 24) Условное обозначение соответствует анонимной роли на базе класса С
 - / R : C
 - / C
 - : C
 - C:
- 25) Условное обозначение соответствует роли с именем R на основе класса С
 - / R : C
 - / C
 - : C
 - C:

4.2. Типовые вопросы, выносимые на зачет

- 1. Понятие проектирования информационных систем (ИС). Анализ бизнеспроцессов и определение фактических потребностей в автоматизации предприятия с помощью ИС.
- 2. Классификация методов проектирования ИС.
- 3. Методические средства реализации ИС.
- 4. Информационные средства реализации ИС.
- 5. Математические средства реализации ИС.
- 6. Программные средства реализации ИС.
- 7. Технические средства реализации ИС.
- 8. Технологические средства реализации ИС.
- 9. Структурный подход к проектированию ИС. Разбиение на уровни

- абстракции с ограничением числа элементов на каждом из уровней.
- 10. Международные организация по стандартизации ИС. Стандарты ИС. Структура и содержание профилей ИС. Функциональные профили, регламентирующие объекты ИС.
- 11. Технологические профили, регламентирующие процессы проектирования, разработки, применения, сопровождения и развития ИС.
- 12. Каскадная модель жизненного цикла ИС.
- 13.Поэтапная модель жизненного цикла ИС с промежуточным контролем.
- 14. Спиральная модель жизненного цикла ИС.
- 15.Основные этапы проектирования ИС: приобретение; поставка; разработка; эксплуатация; сопровождение.
- 16.Вспомогательные процессы проектирования ИС: документирование; управление конфигурацией; обеспечение качества; разрешение проблем; аудит; аттестация; совместная оценка; верификация.
- 17.Организационные процессы проектирования ИС. Создание инфраструктуры; управление; обучение; усовершенствование.
- 18. Визуализация этапов проектирования ИС. Диаграмма Ганта.
- 19. Визуализация этапов проектирования ИС. Диаграмма Парето.
- 20. Сущность и назначение CASE-технологий. Анализ CASE-технологий.
- 21. Модель концептуального уровня ИС в методологии SADT (Structured Analysis & Design Technique). Принципы построения контекстной диаграммы. Пример построения контекстной диаграммы.
- 22. Принципы построения диаграммы декомпозиции в методологии SADT. Пример построения диаграммы декомпозиции.
- 23. Модель концептуального уровня ИС в методологии DFD (Data Flow Diagram). Принципы построения диаграммы потоков данных DFD (Data Flow Diagrams).
- 24. Модели объектов «Сущность-связь» (ERD Entity-Relationship Diagrams). Пример построения.
- 25. Основные понятия Ramus инструмента реализации методологий структурного анализа и проектирования.
- 26. Анализ показателей информационных систем в средах моделирования.
- 27. Анализ архитектур ИС. Выбор архитектур ИС.
- 28. Сценарный подход к разработке ИС.
- 29.Организация проектирования информационных систем. Общая характеристика методов проектирования информационных систем. Организация работы в команде над проектом информационной системы.
- 30. Формулировка задачи проектирования информационной системы. Выбор критериев эффективности при проектировании информационной системы.
- 31.Подготовка исходных данных при проектировании информационной системы.
- 32. Разработка математической модели информационной системы, ограничения.
- 33.Проектная документация на информационную систему. Техническое задание на информационную систему.

- 34. Моделирование информационного процесса. Методы моделирования информационных систем. Модель типовых фаз и этапов информационного процесса.
- 35. Разработка структуры информационной системы. Функционально-модульная структура информационной системы.
- 36.Способы представления и анализа структур информационной системы, графы, логические сети и схемы.
- 37.Оценка эффективности информационной системы на этапе проектирования. Выбор критериев эффективности информационной системы.
- 38. Анализ неопределенных факторов методами прогнозирования и экспертных оценок информационной системы на этапе проектирования.
- 39. Формирование обобщенных технико-экономических показателей информационной системы.
- 40. Формирование технико-эксплуатационных показателей информационной системы.
- 41. Принципы построения архитектуры интегрированных информационных систем.
- 42. Сравнительный анализ методологий моделирования информационных систем.
- 43. Задачи систем поддержки принятия решений. Базы данных как основа систем поддержки принятия решений.
- 44. Неэффективность использования OLTP-систем для анализа данных. OLAP-системы. Многомерная модель данных.
- 45. Состав архитектуры современной ИС. Уровни архитектуры данных.

4.3. Типовые вопросы, выносимые на экзамен

- 1. Типовые задачи описания бизнес-процессов предприятий. Требования к описанию бизнес-процессов предприятий.
- 2. Классификация методологий проектирования информационных систем.
- 3. Сущность методологии объектно-ориентированного анализа и проектирования.
- 4. Основные принципы объектно-ориентированного моделирования.
- 5. Язык объектного моделирования UML: назначение, основные этапы развития, способы использования, структура определения, терминология и нотация.
- 6. Виды диаграмм UML. Последовательность построения диаграмм.
- 7. Разработчики нотаций UML.
- 8. Взаимосвязь нотаций UML.
- 9. Моделирование статической структуры системы с помощью диаграммы классов. Инкапсуляция, наследование, полиморфизм.
- 10. Классы и объекты. Интерфейсы. Отношение зависимости.

- 11.Виды диаграмм UML. Объектно-ориентированное проектирование и последовательность построения диаграмм.
- 12. Базовые принципы объектно-ориентированного проектирования (инкапсуляция, наследование, полиморфизм) и их моделирование с помощью диаграмм классов.
- 13. Классы и объекты. Стереотипы классов. Абстрактные и ассоциативные классы.
- 14.Отношения между классами (ассоциация, композиция, агрегация) и их графическое изображение на диаграмме классов.
- 15. Моделирование поведения системы. Диаграммы деятельности как частный случай диаграммы состояний. Состояния и действия.
- 16. Распределение деятельности в соответствии с ролями объектов, траектории объектов на диаграмме деятельности. Сложные деятельности.
- 17. Диаграммы взаимодействия и их место среди других диаграмм UML.
- 18. Диаграммы последовательностей и их нотация. Линии жизни объектов Виды сообщений. Ветвление потока управления.
- 19. Диаграммы кооперации и их нотация. Объекты, классы, сообщения, связи и кооперации. Композитные и активные объекты, мультиобъекты.
- 20. Состояния деятельности и действия. Переходы на диаграмме деятельности.
- 21. Моделирование параллельного поведения. Дорожки. Объекты на диаграмме деятельности. Сложные деятельности.
- 22. Диаграммы взаимодействия: последовательностей и кооперации.
- 23. Использование диаграммы последовательностей для упорядочивания сообщений во времени.
- 24.Использование диаграммы кооперации для описания структурной организации объектов, посылающих и передающих сообщения.
- 25. Модель прецедентов (вариантов использования, use-cases). Диаграммы прецедентов. Действующие лица (экторы, actors) и прецеденты. Сценарии. Отношения включения и расширения между прецедентами.
- 26. Моделирование физических аспектов функционирования системы с помощью диаграмм развертывания.
- 27. Модель прецедентов как концептуальное представление системы в процессе ее разработки.
- 28. Формализация функциональных требований к системе с помощью диаграммы прецедентов. Спецификация нефункциональных требований с помощью сценариев.
- 29.Отношения между прецедентами: обобщение и включение.
- 30.Отношение расширения между прецедентами. Точка расширения и проверка условий.
- 31. Диаграмма развертывания. Представление ресурсоемких узлов. Соединения и зависимости на диаграмме развертывания.
- 32.Коллективная разработка приложений с помощью UML-моделей.
- 33. Тестирование с помощью UML-моделей.
- 34. Классификация CASE-средств. Характеристики наиболее известных CASE-средств построения диаграмм UML.

- 35. Кодогенерирующие UML-редакторы. Синхронное изменение кода и модели.
- 36. Процессы оценки и выбора CASE-средств для построения диаграмм UML.
- 37. Определение требований при моделировании с помощью CASE-средств.
- 38.Интеграция информационных систем. Межсистемные интерфейсы и драйверы.
- 39.Методы совместного доступа к базам данных и программам в сложных информационных системах (ODBC, CORBA).
- 40. Назначение нотации ARIS eEPC. Основные используемые в рамках нотации объекты.
- 41.Основные используемые типы связей между объектами в нотации ARIS eEPC.
- 42.Описание бизнес-процесса в виде потока последовательно выполняемых работ в нотации ARIS eEPC.
- 43. Сравнительный анализ нотаций ARIS и IDEF.
- 44. Недостатки описания бизнес-процесса в ARIS eEPC.
- 45. Функциональные возможности продуктов ARIS и BPWin.
- 46. Рекомендации по применению методологий моделирования в зависимости от типовых задач.
- 47. Возможности моделирования бизнес-процессов в 1С.
- 48. Принципы построения автоматизированных рабочих мест.
- 49. Классификация автоматизированных рабочих мест.
- 50. Виды обеспечения автоматизированных информационных систем.

ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ «МЕТОДЫ И СПОСОБЫ ПРОЕКТИРОВАНИЯ ИНФОРМАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ»

(Приложение 2 к рабочей программе)

Направление подготовки: 09.03.02 Информационные системы и

технологии

Направленность (профиль): высокопроизводительные вычислительные и

телекоммуникационные интеллектуальные системы и комплексы

Уровень высшего образования: бакалавриат

Форма обучения: очная, заочная

Королев 2023

1. Общие положения

Целью изучения дисциплины является приобретение теоретических и практических навыков для использования в профессиональной деятельности знаний в области современных научных и практических методов проектирования и сопровождения информационных систем (ИС) различного масштаба для разных предметных областей для поддержки функционирования информационных систем.

Задачи дисциплины:

- системное представление основных этапов проектирования информационных систем и технологий, основанного на объектном подходе;
- использование промышленных стандартизированных решений, опирающихся на современные технологии

2. Указания по проведению практических занятий

1 CEMECTP

Тема 1.1. Классификация методов и способов проектирования ИС. Модели ИС. Стандарты ИС.

Практическое занятие 1

Быстрый поиск нормативных документов и библиографических источников о проектировании информационных систем и предоставлении информационных услуг

в программе «Консультант Плюс»

Вид практического занятия: практическая работа в группах.

Образовательные технологии: технология проблемного обучения.

Справочно-правовая система Консультант Плюс по автоматизированным информационным системам Российской Федерации. Основные приемы работы в справочно-правовой системе «КонсультантПлюс». Особенности словаря поля и работа с полем. Одновременный поиск по нескольким базам. Формирование сложных запросов с использованием папок. Работа с текстом документа. Поиск фрагментов текста. Поиск нормативных документов по проектированию информационных систем.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 2

Разработка технического задания на проектирование автоматизированной информационной системы

Вид практического занятия: практическая работа в группах.

Образовательные технологии: технология проблемного обучения.

Стандарты в Российской Федерации. ГОСТ Р ИСО/МЭК 9126-93 о показателях качества информационной системы. Пример технического задания на создание автоматизированной информационной системы.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 3 Построение модели объектов «сущность-связь» с помощью нотации Питера Чена

Вид практического занятия: практическая работа в группах.

Образовательные технологии: технология проектного обучения.

Модель «сущность-связь» — унифицированное представление данных». Основные положения графического моделирования БД. Отображение сущностей, атрибутов и связей в нотации П. Чена. Примеры наследования при определении сущностей.

Продолжительность практического занятия 2/-/- часа.

Практическое занятие 4

Построение модели объектов «сущность-связь» в различных нотациях Вид практического занятия: практическая работа в группах.

Образовательные технологии: технология проектного обучения.

Нотация Мартина. Нотация IDEF1X. Нотация Баркера. Представление сущностей, атрибутов и связей в нотациях. Использование нотаций в CASE-средствах.

Продолжительность практического занятия 2/2/- часа.

Практическое занятие 5

Выбор программного и информационного обеспечения для ИС Вид практического занятия: практическая работа в группах.

Образовательные технологии: технология проектного обучения.

Стандартное программное обеспечение ДЛЯ автоматизации офиса/предприятия. Специализированное программное обеспечение ДЛЯ автоматизации офиса/предприятия. Бесплатные пакеты программ. Создание программного обеспечения. Отладка программного обеспечения. Тестирование программного обеспечения. Стандартное информационное обеспечение для автоматизации офиса/предприятия. Специализированное информационное обеспечение офиса/предприятия. Особенности ДЛЯ автоматизации технических информационного обеспечения ДЛЯ систем. Создание информационного Отладка информационного обеспечения. обеспечения. Определение показателей качества информационного обеспечения.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 6

Выбор технологического и технического обеспечения ИС

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Организация технологического процесса использования ИС применительно к комплексу решаемых задач. Технологический процесс как совокупность функциональных работ, включающих обеспечение ввода, контроля, редактирования и манипулирования данными, накопление, хранение, поиск, защиту, получение выходных документов. Средства технической поддержки ИС: персональные компьютеры (ПК), каналы связи, коммутационное оборудование. Требования организаций по стандартизации к техническим средствам поддержки ИС.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 7

Представление знаний в информационных системах с помощью логической модели

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Логическое исчисление, исчисление предикатов первого порядка, когда предметная область или задача описывается в виде набора аксиом. Правила построения модели. Применение модели в экспертных системах.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 8

Представление знаний в информационных системах с помощью продукционной модели

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Модель, основанная на правилах, в которой знания представлены в виде предложений типа «Если (условие), то (действие)». Правила построения модели. Применение модели в экспертных системах.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 9

Представление знаний в информационных системах с помощью семантической модели

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Модель, в которой структура знаний предметной области формализуется в виде ориентированного графа вершины которого — понятия, а дуги — отношения между ними. Абстрактные или конкретные объекты, события, свойства, операции. Отношения разных типов между объектами. Правила построения модели. Применение модели в экспертных системах.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 10

Представление знаний в информационных системах с помощью фреймовой модели

Вид практического занятия: практическая работа в группах.

Образовательные технологии: технология проектного обучения.

Парадигма для представления знаний с целью использования этих знаний компьютером. Теория представления знаний фреймами. Восприятие фактов посредством сопоставления полученной извне информации с конкретными элементами и значениями, а также с рамками, определенными для каждого объекта в памяти человека. Простой и составной фреймы. Слоты фрейма. Правила построения модели. Применение модели в экспертных системах.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 11

Моделирование процессов деятельности предприятий и организаций

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

функциональной Формирование И информационной моделей ИС использованием методологии инструментальной SADT И среды Ramus. Формализация функциональной структуры ИС. Стандарт IDEFO (Function Modeling – методология функционального моделирования и графическая нотация, предназначенная ДЛЯ формализации И описания бизнес-процессов) программные его поддерживающие, для построения продукты, деятельности предприятий. Анализ предметной области для моделирования Построение контекстной диаграммы. Построение процессов. диаграмм декомпозиции различных уровней.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 12

Создание диаграммы потоков данных и дерева функции

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Предназначение диаграммы потоков данных. Визуализация данных с помощью дерева функции. Построение диаграммы потоков данных. Построение дерева функции. Построение диаграммы декомпозиции в нотации DFD. Построение FEO-диаграммы для одной из имеющихся диаграмм DFD.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 13

Описание бизнес-процессов предприятия с помощью физических диаграмм Вид практического занятия: практическая работа в группах.

Образовательные технологии: технология компьютерного обучения.

Формирование функциональной и информационной моделей ИС с использованием методологии SADT. Принципы нумерации бизнес-процессов. Разработка моделей бизнес-процессов. Взаимодействие компании на верхнем уровне с внешними контрагентами. Составление физической диаграммы в соответствии с описанием деятельности компании дистрибьютора. Формирование списка бизнес-процессов. Построение диаграммы действий.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 14 Проектирование бизнес-процессов предприятия

Вид практического занятия: практическая работа в группах.

Образовательные технологии: технология компьютерного обучения.

Бизнес-процесс "Планирование закупок и размещение заказов поставщикам". Таблица потребностей в товаре. Анализ общего описания бизнеспроцесса и выделение участников процесса. Функции группы планирования и маркетинга.

Продолжительность практического занятия 2/-/- часа

Практическое занятие 15

Разработка информационно-справочной системы для автоматизированного рабочего места сотрудника

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Организация и поддержка коммуникационных процессов внутри предприятия (офиса). Организация и поддержка внешних коммуникационных процессов. Современные средства передачи и обработки информации для ИТ. Проектирование автоматизированного рабочего места (APM) сотрудника.

Продолжительность практического занятия 4/1/- часа.

2 CEMECTP

Практическое занятие 1

Построение матрицы ответственности по результатам моделирования бизнес-процессов предприятия

Вид практического занятия: практическая работа в группах.

Образовательные технологии: технология проектного обучения.

Классификация бизнес-процессов. Моделирование организационной структуры предприятия. Функциональные модели предприятия. Описание бизнеспроцессов. Составление матрицы распределения ответственности.

Продолжительность практического занятия 2/-/- часа.

Практическое занятие 2

Онлайн сервис «draw» для построения схем и диаграмм работы информационной системы

Вид практического занятия: практическая работа в группах.

Образовательные технологии: технология проектного обучения.

Работа с онлайн сервисом «draw» без необходимости проходить регистрацию и процесс авторизации на сайте Изучение интерфейса онлайн сервиса для построения схем и диаграмм и создание схемы. Место сохранения диаграммы.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 3 Построение диаграммы состояний

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Моделирование состояний информационной системы на основе языка UML. Разработка диаграммы состояний из теории автоматов со стандартизированными условными обозначениями, определяющими множество систем от компьютерных программ до бизнес-процессов. Основные элементы диаграммы. Порядок построения диаграммы.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 4 Построение диаграммы видов деятельности

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Построение диаграммы видов деятельности для отражения динамических аспектов поведения системы. Основные элементы диаграммы. Порядок построения диаграммы.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 5 Построение диаграммы классов

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Определение типов классов системы и различного рода статических связей, которые существуют между ними. Отображение атрибутов классов, операций классов и ограничений, которые накладываются на связи между классами. Основные элементы диаграммы. Порядок построения диаграммы.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 6

Построение диаграммы прецедентов (вариантов использования)

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Моделирование вида системы с точки зрения внешнего наблюдателя. Графическое отображение совокупности Прецедентов и Субъектов, а также отношений между ними. Основные элементы диаграммы. Порядок построения диаграммы.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 7 Построение диаграммы компонентов

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Определение архитектуры разрабатываемой системы, установление зависимости между программными компонентами, в роли которых может выступать исходный, бинарный и исполняемый код. Основные элементы диаграммы. Порядок построения диаграммы.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 8 Построение диаграммы развертывания

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Распределение компонентов системы по ее физическим узлам. Отображение физических связей между узлами системы на этапе исполнения. Выявление узких мест системы и реконфигурация ее топологии для достижения требуемой производительности. Основные элементы диаграммы. Порядок построения диаграммы.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 9

Построение диаграммы композитной (составной) структуры

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Отображение внутренней структуры классов и взаимодействия элементов (частей) внутренней структуры класса. Использование диаграмм композитной структуры совместно с диаграммами классов. Основные элементы диаграммы. Порядок построения диаграммы.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 10 Построение диаграммы пакетов

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Основные характеристики классов (атрибуты) и их поведение (методы). Выявление классов и распределение их по пакетам (англ. package) – сущностям, используемым семантической группировки сущностей. ДЛЯ других Осуществление лучшей структурной организации (сильнее модели формализовать модель). Более четкое и продуманное распределение обязанностей между отдельными разработчиками или их командами. Упрощение повторного использования отдельных пакетов в других проектах. Основные элементы диаграммы. Порядок построения диаграммы.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 11 Построение диаграммы последовательностей

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Уточнение диаграмм прецедентов, более детальное описание логики сценариев использования. Документирование проекта с точки зрения сценариев использования. Объекты, которые взаимодействуют в рамках сценария, и сообщения, которыми они обмениваются. Возвращаемые результаты, связанные с сообщениями. Основные элементы диаграммы. Порядок построения диаграммы.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 12 Построение диаграммы процессов

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Распределение процессов по процессорам в физическом проекте системы. Ракурсы структуры процессов системы. Отображение физической совокупности процессоров и устройств, обеспечивающих работу системы. Основные элементы диаграммы. Порядок построения диаграммы в Visio.

Продолжительность практического занятия 2/1/- часа.

Практическое занятие 13

Реализация технологических процессов обработки данных при интегрированном подходе к построению ИС

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Варианты реализации технологических процессов обработки информации. Построение структуры сети для функционирования ИС. Влияние характеристик трафика приложений ИС на пропускную способность каналов связи. Алгоритмы управления трафиком.

Продолжительность практического занятия 2/0,5/- часа.

Практическое занятие 14

Эффективность информационных систем как основного средства реализации информационных технологий

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Понятие ИТ. Этапы развития ИТ. Составляющие ИТ. Инструментарий ИТ. Виды современных ИТ. Компоненты ИТ. Опасности и сложности использования ИТ. ИС как основа ИТ. Типы и особенности различных ИТ.

Продолжительность практического занятия 2/0,5/- часа.

Практическое занятие 15

Методы организации информационных технологий

Вид практического занятия: практическая работа в группах.

Образовательные технологии: компьютерное моделирование.

Комплекс взаимосвязанных научных, технологических, инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых

обработкой и хранением информации. Вычислительная техника и методы организации и взаимодействия с людьми и производственным оборудованием, их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы. Сложная подготовка, большие первоначальные затраты и наукоемкая техника. Математическое обеспечение, моделирование, формирование информационных хранилищ для промежуточных данных и решений. ЮНЕСКО о роли информационных технологий.

Продолжительность практического занятия 2/-/- часа.

Практическое занятие 16 Методы оценки данных в информационных системах

Вид практического занятия: практическая работа в группах.

Образовательные технологии: технология проблемного обучения.

Изучение методов оценки информационных данных и законов их распределения. Анализ информационных данных. Неопределенность данных. Гарантированное интервальное оценивание данных. Анализ эффективности данных в условиях неопределенности. Основные правила преобразования законов распределения. Анализ рисков недостижимости реальных целей.

Продолжительность практического занятия 2/-/- часа.

3. Указания по проведению лабораторного практикума

Не предусмотрен учебным планом.

4. Указания по проведению самостоятельной работы студентов

№ п/п	Наименование блока (раздела) дисциплины	Виды СРС
1.	Тема 1.1. Этапы автоматизации информацион- ных процессов	 Бизнес-процессы склада. Бизнес-процессы маркетинга. Бизнес-процессы службы ИТ. Бизнес-процессы юридического отдела. Бизнес-процессы бухгалтерии. Бизнес-процессы службы труда и заработной платы.
2	T 1.0	7. Бизнес-процессы экономического отдела.8. Бизнес-процессы отдела инвестиций.9. Бизнес-процессы отдела кадров.
2.	Тема 1.2.	1. Разработка специального математического

	Подходы к построению и проектированию ИС	
3	Тема 1.3. Стандарты в области ИС. Обеспечение ИС	* * *
4	Тема 1.4. Модели и методы проектирования ИС	 Управление проектом и проектная документация ИС. Принятие решения руководителем. Психологические аспекты принятия решений с помощью автоматизированной ИС. Организационные формы управления проектами ИС, функции участников проекта. Инвестиционный проект ИС. Типы и основные группы инвестиций. Оценка инвестиционной привлекательности проекта ИС. Источники и формы финансирования проектов ИС. Отбор и сертификация проектов ИС.
5	Тема 2.1. Методологии структурного анализа и проектирова-	теории алгебраических систем. 2. Моделирование бизнес-процессов с

	ния ИС	3. Моделирование потоков данных с
		использованием методологии SADT и
		инструментария AllFusion Modeling Suite.
		4. Моделирование потоков работ с использованием
		методологии SADT и инструментария AllFusion
		Modeling Suite.
		5. Моделирование потоков работ с использованием
		методологии RUP и инструментария Rational Suite.
		6. Создание дополнительных моделей предметной
		области с использованием инструментария
		AllFusion Modeling Suite.
		7. Создание модели AS-IS бизнес-процессов
		деятельности компании.
6.	Тема 2.2.	1. Объектно-ориентированный подход к
	Методологии	анализу и проектированию ИС.
	объектно-	2. UML – унифицированный язык объектно-
	ориентированн	ориентированного моделирования ИС.
	ого анализа и	3. Диаграммы вариантов использования
	проектирова-	(модели прецедентов).
	ния ИС	4. Диаграммы классов.
		5. Диаграммы взаимодействия.
7.	Тема 2.3.	1. Роль информационных технологий для
	Свойства, этапы	реализации бизнес-процессов.
	развития и	2. Информационные процессы. Связь
	классификация	управления и информации.
	ТИ	3. Характеристики процессов информатизации.
8.	Тема 2.4.	1 1
	Выбор варианта	структурирования организационных систем
	и структуры ИТ	управления предприятиями.
	для	2. Методы и инструментальные средства для
	автоматизации	компьютерной поддержки предприятий и
	работы	организаций на региональных электронных рынках
	предприятия	(промышленных товаров, услуг, труда, инвестиций,
		инноваций и пр.).
		3. Управление персоналом с помощью ИТ. 4. Факторы, влияющие на эффективность ИТ.
		5. Задачи анализа эффективности ИТ.
		6. Управление проектами с помощью ИТ.
<u> </u>		о. з правление проектами с помощою ит.

5. Указания по проведению контрольных работ

5.1. Требования к структуре

Структура контрольной работы должна способствовать раскрытию темы: иметь титульный лист, содержание, введение, основную часть, заключение, список литературы.

5.2. Требования к содержанию

- 5.2.1. Во введении обосновывается актуальность темы, определяется цель работы, задачи и методы исследования.
- 5.2.2. При определении целей и задач исследования необходимо правильно их формулировать. Так, в качестве цели не следует употреблять глагол «сделать». Правильно будет использовать глаголы: «раскрыть», «определить», «установить», «показать», «выявить» и т.д.
- 5.2.3. Основная часть работы включает вопросы, каждый из которых посвящается решению задач, сформулированных во введении, и заканчивается констатацией итогов.
- 5.2.4. Приветствуется иллюстрация содержания работы таблицами, графическим материалом (рисунками, схемами и т.п.).
 - 5.2.5. Необходимо давать ссылки на используемую Вами литературу.
- 5.2.6. Заключение должно содержать сделанные автором работы выводы, итоги исследования.
- 5.2.7. Вслед за заключением идет список литературы, который должен быть составлен в соответствии с установленными требованиями. Если в работе имеются приложения, они оформляются на отдельных листах, и должны быть соответственно пронумерованы.

5.3. Требования к оформлению.

Объём контрольной работы -5...10 страниц формата A4, напечатанного с одной стороны текста (1,5 интервал, шрифт Times New Roman). Контрольная работа должна быть также представлена в электронном виде.

6. Перечень основной и дополнительной учебной литературы

Основная литература:

- 1. Голицына, О. Л. Информационные системы : учебное пособие / О. Л. Голицына, Н. В. Максимов, И. И. Попов. 2-е изд. Москва : ФОРУМ : ИНФРА-М, 2018. 448 с. ISBN 978-5-91134-833-5. Режим доступа: по подписке. URL: https://znanium.com/catalog/product/953245
- 2. Заботина, Н. Н. Проектирование информационных систем : учебное пособие / Н. Н. Заботина. Москва : ИНФРА-М, 2020. 331 с. ISBN 978-5-16-004509-2. Режим доступа: по подписке. URL: https://znanium.com/catalog/product/1036508

Дополнительная литература:

3. Абрамов, Г.В. Проектирование информационных систем: учебное пособие / Г.В. Абрамов, И.Е. Медведкова, Л.А. Коробова. - Воронеж: Воронежский государственный университет инженерных технологий, 2012. - 172 с. - ISBN 978-5-89448-953-7. Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=141626

Рекомендуемая литература:

1) Ипатова, Э.Р. Методологии и технологии системного проектирования информационных систем: учебник / Э.Р. Ипатова, Ю.В. Ипатов. — 2-е изд., стер. — Москва: Флинта, 2016. — 257 с.: табл., схем. — (Информационные технологии). — Режим доступа: по подписке. — URL: http://biblioclub.ru/index.php?page=book&id=79551 (дата обращения: 29.09.2020). — Библиогр.: с. 95-96. — ISBN 978-5-89349-978-0. — Текст: электронный.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. http://www.rusedu.info/ Сайт «Информационные технологии в образовании»
- 2. http://nit.miem.edu.ru/ Сайт «Международная студенческая школа-семинар «Новые информационные технологии»».

8. Перечень информационных технологий

Перечень программного обеспечения: LibreOffice(для создания отчетов), Ramus.

Информационные справочные системы: не предусмотрено курсом данной дисциплины

Ресурсы информационно-образовательной среды Технологического университета

Рабочая программа и методическое обеспечение по дисциплине «Методы и способы проектирования информационных систем и технологий».