Федеральное государственное бюджетное образовательное учреждение высшего образования «ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ ДВАЖДЫ ГЕРОЯ СОВЕТСКОГО СОЮЗА, ЛЕТЧИКА-КОСМОНАВТА А.А. ЛЕОНОВА»

УТВЕРЖДАЮ			
И.о. проректора			
А.В. Троицкий			
2023г.	>>	«	

ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ КАФЕДРА МАТЕМАТИКИ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ»

Направление подготовки: 01.03.02 Прикладная математика и информатика

Профиль: Программирование. Математическое моделирование

Уровень высшего образования: бакалавриат

Форма обучения: очная

Рабочая программа является составной частью основной профессиональной образовательной программы и проходит рецензирование со стороны работодателей в составе профессиональной образовательной программы. Рабочая программа актуализируется и корректируется ежегодно.

Авторы: д.т.н., профессор Вилисов В.Я. Рабочая программа дисциплины: Математические методы исследования операций: — Королев МО: «Технологический Университет», 2023г.

Рецензент: д.т.н. профессор Мищенко А.В.

Рабочая программа составлена в соответствии с требованиями федерального Государственного образовательного стандарта высшего образования по направлению подготовки бакалавров 01.03.02 «Прикладная математика и информатика» и Учебного плана, утвержденного Ученым советом Университета. Протокол № 9 от 11.04.2023 г.

Рабочая программа рассмотрена и одобрена на заседании кафедры:

Заведующий кафедрой (ФИО, ученая степень, звание, подпись)

Год утверждения (переутверждения)

Номер и дата протокола заседания кафедры

15.03.2023

Рабочая программа сог	гласована:			
Руководитель ОПОП І		Steff	И.В. Бугай, к	.т.н., доцент
Рабочая программа ре	комендован	а на заседа	нии УМС:	_
Год утверждения (пере- утверждения)	2023			
Номер и дата протокола заседания УМС	№5 от 11.04.2023			

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Целью изучения дисциплины является

- Развить системное мышление слушателей путем детального анализа подходов к математическому моделированию и сравнительного анализа разных типов моделей;
- Ознакомить слушателей с математическими свойствами моделей и методов оптимизации, которые могут использоваться при анализе и решении широкого спектра прикладных задач.

В процессе обучения студент приобретает и совершенствует следующие компетенции:

общепрофессиональные компетенции (ОПК):

– Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения (ОПК-5).

профессиональные компетенции (ПК):

– Способность использовать современные методы разработки и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ (ПК-3).

Основными задачами дисциплины являются:

- освоение студентами базовых знаний в области построения математических моделей.
- получение студентами умений и навыков проведения математического моделирования и анализа в области их профессиональной деятельности.

Показатель освоения компетенции отражают следующие индикаторы:

Необходимые знания:

- Знать основные языки программирования и работы с базами данных, операционные системы и оболочки, современные программные среды разработки информационных систем и технологий
- Знать методы и приемы формализации задач
- Знать методы и средства проектирования программного обеспечения, программных интерфейсов

Необходимые умения:

- Уметь применять языки программирования и работы с базами данных, современные программные среды разработки информационных систем и технологий для автоматизации бизнес-процессов, решения прикладных задач различных классов, ведения баз данных и информационных хранилищ
- Уметь выбирать средства и вырабатывать реализации требований к программному обеспечению

- Уметь проводить оценку и обоснование рекомендуемых решений Трудовые действия:
- Владеть навыками программирования, отладки и тестирования прототипов программно-технических комплексов задач
- Владеть методами и средствами проектирования баз данных

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Математические методы исследования операций» относится к обязательной части основной профессиональной образовательной программы подготовки бакалавров по направлению подготовки 01.03.02 «Прикладная математика и информатика».

Дисциплина базируется на дисциплинах: «Линейная алгебра», «Дискретная математика», «Математический анализ» и компетенциях: ПК-2, ОПК-1.

Знания и компетенции, полученные при освоении дисциплины, являются базовыми для изучения дисциплин: «Системы поддержки принятия решений», «Математические методы и среды разработки экспертных систем», «Искусственный интеллект», и др., и выполнения выпускной квалификационной работы бакалавра.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины составляет 3 зачетных единицы, 108 часов.

Таблица 1

Виды занятий	Всего часов	Семестр	Семестр 4	Семестр 5	Семестр				
Общая трудоемкость	108			108					
ОЧ	НАЯ ФОРМ.	А ОБУЧЕН	ия		1				
Аудиторные занятия	48			48					
Лекции (Л)	16			16					
Практические занятия (ПЗ)	32			32					
Лабораторные работы (ЛР)									
Практическая подготовка	-			-					
Самостоятельная работа	60			60					
Курсовые работы (проекты)									
Расчетно-графические работы									
Контрольная работа	+			+					
Текущий контроль знаний	Тест			Тест					
Вид итогового контроля	Экзамен			Экзамен					
ЗАОЧНАЯ ФОРМА Н	ЗАОЧНАЯ ФОРМА НЕ ПРЕДУСМОТРЕНА УЧЕБНЫМ ПЛАНОМ								

4.Содержание дисциплины

4.1. Темы дисциплины и виды занятий

Таблина 2

Наименование тем	Лекции, час.	Практические занятия, час	Занятия в интерактив- ной форме	Практиче- ская подго- товка	Код компетен- ций
Тема 1. Задача нелинейного программирования	2	4	2	-	ОПК-5, ПК-3
Тема 2. Задача линейного программирования	4	8	4	-	ОПК-5, ПК-3
Тема 3. Теория игр	4	8	2	-	ОПК-5, ПК-3
Тема 4. Оптимизация в условиях неопределенности	4	8	2	-	ОПК-5, ПК-3
Тема 5. Основные понятия многокритериальной оптимизации	2	4	2	-	ОПК-5, ПК-3
Итого:	16	32	12	-	

4.2 Содержание дисциплины

Тема 1. Задача нелинейного программирования. Конечномерные задачи с ограничениями типа равенства и неравенства. Формулировка теоремы о неявной функции (для линейной и нелинейной системы уравнений). Формулировка принципа Лагранжа для задач со смешанными ограничениями типа равенства и неравенства. Достаточные условия оптимальности в задачах с ограничениями. Постановка задачи об определении портфеля ценных бумаг Марковица—Тобина с наименьшим риском при заданном среднем уровне дохода. Алгоритм решения задачи с использованием принципа Лагранжа.

Тема 2. Задача линейного программирования. Формулировка задачи линейного программирования (ЛП). Примеры задач ЛП. Стандартная (нормальная) и каноническая формы представления задачи ЛП и сведение к ним. Свойства допустимого множества и оптимального решения в задаче ЛП. Основные представления о методах решения задач ЛП, основанных на направленном переборе вершин (симплекс-метод и др.). Двойственные задачи линейного программирования. Теоремы двойственности. Интерпретация двойственных переменных. Анализ чувствительности оптимального решения к параметрам задачи линейного программирования. Некоторые специальные задачи линейного программирования (транспортная, производственно-транспортная и т.д.).

Тема 3. Теория игр. Основные понятия теории игр. Определение антагонистической игры в нормальной форме. Равновесная ситуация. Чистые стратегии. Принцип минимакса. Оптимальные смешанные стратегии и их основные свойства. Поиск оптимальных стратегий с помощью решения задач линейного

программирования. Понятие о корпоративных играх и о различных определениях их решений. Равновесие по Нэшу. Парето-оптимальность.

Тема 4. Оптимизация в условиях неопределенности. Задача выбора решений в условиях неопределенности. Критерии выбора решений в условиях неопределенности (принцип гарантированного результата, критерий Гурвица, критерий Байеса-Лапласа, критерий Сэвиджа). Применение принципа гарантированного результата в задачах экономического планирования. Множество допустимых гарантирующих программ. Наилучшая гарантирующая программа. Принятие решение при случайных параметрах. Вероятностная информация о параметрах. Принятие решений на основе математического ожидания. Случайность и риск. Учет склонности к риску.

Тема 5. Основные понятия многокритериальной оптимизации. Происхождение и постановка задачи многокритериальной оптимизации. Множество достижимых критериальных векторов. Доминирование и оптимальность по Парето. Эффективные решения и пареттова граница. Понятие лица, принимающего решение. Основные типы методов решения задач многокритериальной оптимизации. Методы аппроксимации пареттовой границы.

5.Перечень учебно-методического обеспечения для самостоятельной работы по дисциплине

1. «Методические указания для обучающихся по освоению дисциплины»

6.Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Структура фонда оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине приведена в Приложении 1 к настоящей рабочей программе.

7.Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Шапкин А.С. Математические методы и модели исследования операций: учебник / А.С. Шапкин, В.А. Шапкин. 7-е изд. Москва: Дашков и К°, 2019. 398 с.: ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=573373
- 2. Донкова И.А. Исследование операций и методы оптимизации: учебное пособие: [16+] / И.А. Донкова; Тюменский государственный университет. Тюмень: Тюменский государственный университет, 2017. 196 с.: ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=572102

Дополнительная литература:

1. Каштаева С. В. Исследование операций: учебное пособие / С. В. Каштаева. — Пермь: ПГАТУ, 2020. — 77 с. — ISBN 978-5-94279-499-6. — Текст: элек-

- тронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/156714
- 2. Тынкевич М. А. Практикум по дисциплине «Исследование операций и методы оптимизации» (нелинейная оптимизация и статистические решения): учебное пособие / М. А. Тын-кевич, Г. Н. Речко. Кемерово: КузГТУ имени Т.Ф. Горбачева, 2018. 58 с. ISBN 978-5-906969-65-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/105430
- 3. Бурда, А. Г. Исследование операций и методы оптимизации: учебное пособие / А. Г. Бурда, В. В. Осенний. Краснодар: КубГАУ, 2020. 181 с. ISBN 978-5-907346-07-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/254312

8.Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Интернет-ресурсы:

http://www.znanium.com/ - электронно-библиотечная система

http://www.e.lanbook.com/ - ЭБС Издательства "ЛАНЬ"

http://www.rucont.ru/- электронно-библиотечная система

http://www.biblioclub.ru/ -университетская библиотека онлайн

9. Методические указания для обучающихся по освоению дисциплины

Методические указания для обучающихся по освоению дисциплины приведены в Приложении 2 настоящей рабочей программе.

10.Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: MS Office

Информационные справочные системы: Электронные ресурсы образовательной среды Университета

11.Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лекционные занятия:

- аудитория, оснащенная презентационной техникой (проектор, экран);
- доской для письма мелом или маркерами;
- комплект электронных презентаций/слайдов;
- комплект записей лекций для дистанционного обучения.

Практические занятия:

- аудитория, оснащенная мультимедийными средствами (проектор, ноутбук),
- демонстрационными материалами (наглядными пособиями);
- доской для письма мелом или фломастерами;

Прочее:

- рабочее место преподавателя, оснащенное компьютером с доступом в Интернет;
- рабочие места обучающихся, оснащенные компьютером с доступом в Интернет.

ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ КАФЕДРА МАТЕМАТИКИ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ»

Направление подготовки: 01.03.02 Прикладная математика и информатика

Профиль: Программирование, математическое моделирование

Уровень высшего образования: бакалавриат

Форма обучения: очная

Королев 2023

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

№ π/π	Индекс компе- тенции	Содержание компетенции (или ее части)*	Раздел дисци- плины, обеспе- чивающий фор- мирование ком-	обеспечиваю	е изучения разде щего формирова ги), обучающийс Необходимые	ние компетенции
			петенции (или ее части)	мые знания	умения	ствия
1.	ОПК-5	Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения	Тема 1-7.	Знать основные языки программирования и работы с базами данных, операционные системы и оболочки, современные программные среды разработки информационных систем и технологий	Уметь применять языки программирования и работы с базами данных, современные программные среды разработки информационных систем и технологий для автоматизации бизнеспроцессов, решения прикладных задач различных классов, ведения баз данных и информационных хранилищ	Владеть навы- ками програм- мирования, отладки и те- стирования прототипов программно- технических комплексов задач
2.	ПК-3	Способность использовать современные методы разработки и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ	Тема 1-7.	Знать методы и приемы формализации задач Знать методы и средства проектирования программного обеспечения, программных интерфейсов	Уметь выбирать средства и вырабатывать реализации требований к программному обеспечению Уметь проводить оценку и обоснование рекомендуемых решений	Владеть методами и средствами проектирования баз данных

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

		i iii qopiiiipozuiiiii	, onneume mixusi odennbumi
Код компе- тенции	Инструменты, оценивающие сформирован- ность компе- тенции	Этапы и показатель оценивания компетенции	Шкала и критерии оценки
ОПК-5, ПК-3	Тест	А) полностью сформирована (компетенция освоена на высоком уровне) — 90% правильных ответов Б) частично сформирована: •компетенция освоена на продвинутом уровне — 70% правильных ответов; •компетенция освоена на базовом уровне — от 51% правильных ответов; В) не сформирована (компетенция не освоена) — менее 50% пра-	Проводится письменно Время, отведенное на процедуру –30 мин. Неявка 0 баллов. Критерии оценки определяются процентным соотношением. Неудовлетворительно – менее 50% правильных ответов. Удовлетворительно – от 51% правильных ответов. Хорошо – от 70%. Отлично – от 90%. Максимальная оценка – 5 баллов.
	Выполнение контрольной работы	на) – менее 30% правильных ответов А) полностью сформирована (компетенция освоена на высоком уровне) – 5 баллов Б) частично сформирована:	При определении сформированности компетенций критериями оценивания выступают методические рекомендации, разработанные по дисциплине для данного вида.

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

3.1. Типовые вопросы, выносимые на тестирование

- **1.** На каком этапе решения оптимальных задач выполняется построение целевой функции переменных ?
- а) Построение математической модели рассматриваемой проблемы
- b) Построение качественной модели рассматриваемой проблемы
- с) Исследование влияния переменных на значение целевой функции

- d) Экспертная проверка результатов
- е) Тестирование
- **2.** На каком этапе решения оптимальных задач строится числовая характеристика, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения?
- а) Построение математической модели рассматриваемой проблемы
- b) Построение качественной модели рассматриваемой проблемы
- с) Исследование влияния переменных на значение целевой функции
- d) Экспертная проверка результатов
- е) Тестирование
- **3.** На каком этапе решения оптимальных задач находят решение, используя методы математического программирования?
- а) Исследование влияния переменных на значение целевой функции
- b) Построение математической модели рассматриваемой проблемы
- с) Построение качественной модели рассматриваемой проблемы
- d) Экспертная проверка результатов
- е) Тестирование
- **4.** На каком этапе решения оптимальных задач устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации?
- а) Экспертная проверка результатов
- b) Исследование влияния переменных на значение целевой функции
- с) Построение математической модели рассматриваемой проблемы
- d) Построение качественной модели рассматриваемой проблемы
- е) Тестирование
- **5.** Что выполняется на этапе построения качественной модели рассматриваемой проблемы при решении оптимальных задач?
- а) выделяют факторы, которые представляются наиболее важными, и устанавливают закономерности, которым они подчиняются
- b) выполняется построение целевой функции переменных
- с) строится числовая характеристика, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения
- d) находят решение, используя методы математического программирования
- е) устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации
- **6.** Что выполняется на этапе построения математической модели рассматриваемой проблемы при решении оптимальных задач?
- а) строится числовая характеристика, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения
- b) выполняется построение целевой функции переменных
- с) выделяют факторы, которые представляются наиболее важными, и устанавливают закономерности, которым они подчиняются
- d) находят решение, используя методы математического программирования
- е) устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации

- **7.** Что выполняется на этапе исследования влияния переменных на значение целевой функции при решении оптимальных задач?
- а) находят решение, используя методы математического программирования
- b) строится числовая характеристика, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения
- с) выполняется построение целевой функции переменных
- d) выделяют факторы, которые представляются наиболее важными, и устанавливают закономерности, которым они подчиняются
- е) устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации
- **8.** Что выполняется на этапе экспертной проверки результатов при решении оптимальных задач?
- а) устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации
- b) находят решение, используя методы математического программирования
- с) строится числовая характеристика, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения
- d) выполняется построение целевой функции переменных
- е) выделяют факторы, которые представляются наиболее важными, и устанавливают закономерности, которым они подчиняются
- **9.** Что выполняется на этапе построения математической модели рассматриваемой проблемы при решении оптимальных задач?
- а) выполняется построение целевой функции переменных
- b) строится числовая характеристика, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения
- с) выделяют факторы, которые представляются наиболее важными, и устанавливают закономерности, которым они подчиняются
- d) находят решение, используя методы математического программирования
- е) устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации
- 10. Для чего предназначено моделирование ?
- а) Для объяснения поведения системы и выбора параметров, характеризующих процесс
- b) Для описания достижений желаемого результата
- с) Для предоставления одной системы в знаках и символах другой системы
- d) Для описания, объяснения и прогнозирования поведения системы
- е) Для оказания помощи руководителю в принятии решений
- 11. Что понимают под эффективностью операции ?
- а) степень достижения поставленной цели
- b) представление одной системы в знаках и символах другой системы
- с) количественная мера эффективности
- d) любая целенаправленная деятельность человека или коллектива людей
- е) чувствительность к изменениям деятельности
- 12. Что понимают под критерием эффективности?
- а) количественная мера эффективности

- b) представление одной системы в знаках и символах другой системы
- с) любая целенаправленная деятельность человека или коллектива людей
- d) степень достижения поставленной цели
- е) чувствительность к изменениям деятельности
- 13. Что отражает критерий эффективности?
- а) Цель операции в количественной форме
- b) Степень достижения поставленной цели
- с) Оценку вариантов достижения цели
- d) Чувствительность к изменениям деятельности
- е) Основную цель операции
- 14. Степень достижения поставленной цели операции это...
- а) эффективность
- b) модель
- с) операция
- d) критерий эффективности
- е) спрос
- 15. Количественная мера эффективности это...
- а) критерий эффективности
- b) модель
- с) операция
- d) эффективность
- е) спрос
- **16.** Какой метод применяют для отыскания экстремальных значений внутри указанной области?
- а) Методы исследования функций
- b) Метод множителей Лагранжа
- с) Методы вариационного исчисления
- d) Динамическое программирование
- е) Принцип максимума
- 17. Какие методы позволяют снизить размерность решаемой задачи?
- а) Метод множителей Лагранжа
- b) Методы исследования функций
- с) Методы вариационного исчисления
- d) Динамическое программирование
- е) Принцип максимума
- **18.** Какие методы используются для решения задач, в которых критерии оптимальности представляются в виде функционалов и решениями которых служат неизвестные функции?
- а) Методы вариационного исчисления
- b) Метод множителей Лагранжа
- с) Методы исследования функций
- d) Динамическое программирование
- е) Принцип максимума
- 19. Какие методы используются для решения задач оптимизации дискретных многостадийных процессов ?

- а) Динамическое программирование
- b) Метод множителей Лагранжа
- с) Методы исследования функций
- d) Методы вариационного исчисления
- е) Принцип максимума
- 20. Какие методы представляют собой алгоритм определения оптимальной стратегии управления на всех стадиях процесса?
- а) Динамическое программирование
- b) Метод множителей Лагранжа
- с) Методы исследования функций
- d) Методы вариационного исчисления
- е) Принцип максимума
- 21. Какие методы используются для решения задач оптимизации процессов, описываемых системами дифференциальных уравнений?
- а) Принцип максимума
- b) Динамическое программирование
- с) Метод множителей Лагранжа
- d) Методы исследования функций
- е) Методы вариационного исчисления
- **22.** Какие методы используются для решения оптимальных задач с линейными выражениями для критерия оптимальности и линейными ограничениями на область изменения переменных ?
- а) Линейное программирование
- b) Динамическое программирование
- с) Метод множителей Лагранжа
- d) Методы исследования функций
- е) Методы вариационного исчисления
- 23. Какие методы используются для решения оптимальных задач с нелинейными функциями цели?
- а) Методы нелинейного программирования
- b) Динамическое программирование
- с) Метод множителей Лагранжа
- d) Методы исследования функций
- е) Методы вариационного исчисления
- **24.** Какие методы используются для решения оптимальных задач, в которых критерии оптимальности и ограничения задаются в виде полиномов ?
- а) Геометрическое программирование
- b) Методы нелинейного программирования
- с) Динамическое программирование
- d) Метод множителей Лагранжа
- е) Методы вариационного исчисления
- 25. Какие задачи решаются с помощью методов геометрического программирования?
- а) методы используются для решения оптимальных задач, в которых критерии оптимальности и ограничения задаются в виде полиномов

- b) методы используются для решения оптимальных задач с нелинейными функциями цели
- с) методы используются для решения оптимальных задач с линейными выражениями для критерия оптимальности и линейными ограничениями на область изменения переменных
- d) методы используются для решения задач оптимизации процессов, описываемых системами дифференциальных уравнений
- е) методы используются для решения задач оптимизации дискретных многостадийных процессов
- 26. Какие задачи решаются с помощью методов линейного программирования?
- а) методы используются для решения оптимальных задач с линейными выражениями для критерия оптимальности и линейными ограничениями на область изменения переменных
- b) методы используются для решения оптимальных задач с нелинейными функциями цели
- с) методы используются для решения оптимальных задач, в которых критерии оптимальности и ограничения задаются в виде полиномов
- d) методы используются для решения задач оптимизации процессов, описываемых системами дифференциальных уравнений
- е) методы используются для решения задач оптимизации дискретных многостадийных процессов

Для транспортной задачи, заданной таблицей

эн эцда нь, эцданной таолицей								
	за-	B_1	B_2	B_3	B_4			
казь		180	50	90	20			
запа	сы	100	30		20			
A_1	150	5	7	1	4			
	130							
A_2	60	10	3	3	8			
71 ₂	00				_			
Δ	130	12	2	4	4			
A_3	130							

первоначальный план перевозок, полученный с помощью метода северозападного угла, имеет вид...

$$(!) \begin{pmatrix} 150 & 0 & 0 & 0 \\ 30 & 30 & 0 & 0 \\ 0 & 20 & 90 & 20 \end{pmatrix}$$

$$(?) \begin{pmatrix} 40 & 0 & 90 & 20 \\ 60 & 0 & 0 & 0 \\ 80 & 50 & 0 & 0 \end{pmatrix}$$

$$(?) \begin{pmatrix} 40 & 50 & 40 & 20 \\ 30 & 0 & 30 & 0 \\ 110 & 0 & 20 & 0 \end{pmatrix}$$
$$(?) \begin{pmatrix} 60 & 25 & 45 & 20 \\ 60 & 0 & 0 & 0 \\ 60 & 25 & 45 & 0 \end{pmatrix}.$$

27. Для транспортной задачи, заданной таблицей

	зака-	B_1	B_2	B_3	B_4
зы запа	сы	180	50	90	20
A_{l}	150	5	7	1	4
A_2	60	10	3	6	8
A_3	130	12	2	4	11

первоначальный план перевозок, полученный с помощью метода наименьшей стоимости, имеет вид...

$$(!) \begin{pmatrix} 40 & 0 & 90 & 20 \\ 60 & 0 & 0 & 0 \\ 80 & 50 & 0 & 0 \end{pmatrix}$$

$$(?) \begin{pmatrix} 150 & 0 & 0 & 0 \\ 30 & 30 & 0 & 0 \\ 0 & 20 & 90 & 20 \end{pmatrix}$$

$$(?) \begin{pmatrix} 40 & 50 & 40 & 20 \\ 30 & 0 & 30 & 0 \\ 110 & 0 & 20 & 0 \end{pmatrix}$$

$$(?) \begin{pmatrix} 60 & 25 & 45 & 20 \\ 60 & 0 & 0 & 0 \\ 60 & 25 & 45 & 0 \end{pmatrix}$$

28. Суммарная стоимость перевозок по плану, записанному в транспортной таблице

		B_1		B_2		B_3		B_4	
зака запа		180)	50		90		20	
A_1	150		5		7		1		4
	150	40		50		40		20	
				~ ~		.0		20	
Δ	60		10		3	10	6	20	8
A_2	60	30	10		3	30	6	20	8

110	20
-----	----

равна...

- (!) 2550
- (?)440
- (?) 2930
- (?) 3240.

29. Для плана, заданного транспортной таблицей

K '	mioro ipui		P 1110	г	011111	,		1	
	за-	B_1		B_2		B_3		B_4	
казь запа		180		50		90		20	
A_1	150		5		7		1		4
	130	40				90		20	
Δ	60		10		3		6		8
A_2	00	60							
Δ	130		12		2		4		11
A_3	130	80		50					

потенциал u_2 , соответствующий поставщику A_2 , равен 4. Тогда потенциал v_1 , соответствующий потребителю B_1 , равен ...

- (!) 6
- (?)56
- (?) 176
- (?) 10.

30. Для плана, заданного транспортной таблицей

	3a-	B_1	B_2	B_3	B_4
казь запа		180	50	90	20
A_1	150	5	7	1	4
⁷ 1	130	40		90	20
A_2	60	10	3	6	8
		60	12	14	111
A_3	130	80 <u>12</u>	50 <u>2</u>	4	11
		80	50		

потенциал v_4 , соответствующий потребителю B_4 , равен (–3). Тогда потенциал u_1 , соответствующий поставщику A_1 , равен ...

- (!)7
- (?) 1
- (?) 16
- (?) 153.

31. Для плана, заданного транспортной таблицей

Commerce of the state of the st		11 1000111		
	B_1	B_2	B_3	B_4
заказы	190	50	00	20
запасы	100	30	90	20

$A_{\rm l}$	150		5		7		1		4
	130	40				90		20	
A_2	60		10		3		6		8
A_2	00	60							
Λ	120		12		2		4		11
A_3	130	80		50					

потенциал v_3 , соответствующий потребителю B_3 , равен 5. Тогда потенциал v_2 , соответствующий потребителю B_2 , равен ...

- (!) -1
- (?) -2
- (?) 1
- (?) 3.

Для транспортной задачи, заданной таблицей **33.**

	за-	B_1		B_2		B_3	
казы запа		60		50		40	
A_1	42		2		4		6
A_2	52		4		5		3
A_3	56		3		6		3

оптимальный план перевозок имеет вид...

$$(!) \begin{pmatrix} 42 & 0 & 0 \\ 0 & 50 & 2 \\ 18 & 0 & 38 \end{pmatrix}$$

$$(?) \begin{pmatrix} 42 & 0 & 0 \\ 2 & 50 & 0 \\ 16 & 0 & 40 \end{pmatrix}$$
$$(?) \begin{pmatrix} 2 & 0 & 40 \\ 2 & 50 & 0 \end{pmatrix}$$

$$(?) \begin{pmatrix} 2 & 0 & 40 \\ 2 & 50 & 0 \\ 56 & 0 & 0 \end{pmatrix}$$

(?) оптимальный план не существует.

Какова цель решения транспортной задачи? 34.

- (?) Выбор оптимального пути на графе.
- (?) Выбор наилучшего транспортного средства.
- (!) Определение количества однородной продукции, перевозимой из пунктов отправления и количества продукции поставляемой в пункты назначения.
- (?) Выявление дефицита продукции в пунктах отправления.
- (?) Выявление дефицита продукции в пунктах назначения.

- **35**. Частным случаем какой модели (задачи, метода) является транспортная задача?
- (?) Метода множителей Лагранжа.
- (?) Задачи о назначениях.
- (?) Задачи о рюкзаке.
- (?) Задачи коммивояжера.
- (!) Задачи линейного программирования.
- 36. Что такое несбалансированная транспортная задача?
- (!) В которой сумма однородных продуктов в пунктах отправления не равна сумме продуктов в пунктах назначения.
- (?) В которой перевозятся два вида продуктов, разного количества.
- (?) В которой сумма расстояний между пунктами отправления не равна сумме расстояний между пунктами назначения.
- (?) В которой число нулей в транспортной таблице не равно числу ненулевых элементов.
- (?) В которой стоимость перевозки существенно отличается от времени.
- 37. Как можно решить прямую транспортную задачу?
- (?) Методом фиктивного разыгрывания.
- (?) С помощью метода множителей Лагранжа.
- (!) Сведением ее к задаче линейного программирования.
- (?) Методами нелинейного программирования.
- (?) Методом Парето-оптимизации.

3.2. Типовые вопросы, выносимые на второе тестирование

1. Задача о загрузке рюкзака является задачей программирования

нелинейного

параметрического

динамического +

линейного

целочисленного

2. В задачах теории игр говорят, что игра имеет седловую точку, если

нижняя цена игры меньше верхней

нижняя цена игры равна верхней +

нижняя цена игры больше верхней

нижняя цена игры не больше верхней

нижняя цена игры не меньше верхней

3. Игра называется игрой с нулевой суммой, если

выигрыш игрока А равен 0

выигрыш игрока В равен 0

сумма выигрышей игроков равна 0 +

выигрыш переходит от одного игрока другому

выигрыш приходит извне игры

4. В задачах теории игр та стратегия, которая соответствует нижней цене игры, называется

максиминной +

минимаксной

оптимальной

нижней

лучшей

5. В задачах теории игр элементы платежной матрицы

положительные

целые

дробные +

любые

неотрицательные

6. В играх с «природой» критерий, учитывающий возможность как наихудшего, так и наилучшего для человека поведения природы, называется критерием Вальда

Сэвиджа

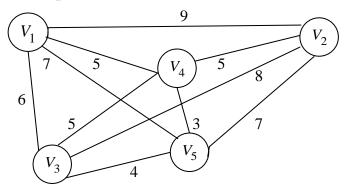
Гурвица +

вероятностным критерием

7. Динамическое программирование — это метод оптимизации многошаговых задач в условиях

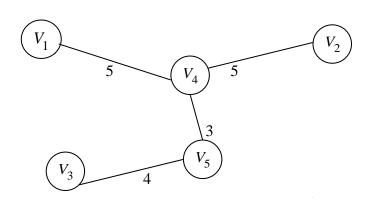
отсутствия обратной связи (последействия) и аддитивности целевой функции + учета обратной связи (последействия) и аддитивности целевой функции отсутствия обратной связи (последействия) и неаддитивности целевой функции

8. Метод динамического программирования применяется для решения многошаговых задач +

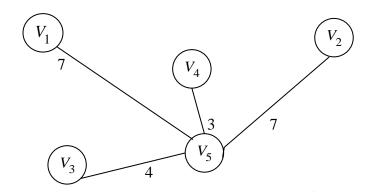

задач, которые нельзя представить в виде последовательности отдельных шагов только задач линейного программирования

задач макроэкономики

- 9. Какие критерии выбора решений в условиях риска и неопределенности не являются комбинированными?
- (?) Вальда и Гермейера
- (?) Сэвиджа и Гурвица
- (?) Гурвица и Ходжа-Лемана
- (!) Вальда, Оптимистический и Сэвиджа
- (?) Лапласа-Байеса и Гермейера
- 10. Какие критерии выбора решений в условиях риска и неопределенности являются комбинированными?
- (?) Вальда и Гермейера
- (?) Сэвиджа и Гурвица
- (!) Гурвица и Ходжа-Лемана
- (?) Вальда, Оптимистический и Сэвиджа
- (?) Лапласа-Байеса и Гермейера
- **11**. Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Вальда?
- (!) Платежной матрицы
- (?) Платежной матрицы и вероятностей состояний природы


- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ
- **12.** Каких исходных данных достаточно для выбора оптимального решения с помощью Оптимистического критерия ?
- (!) Платежной матрицы
- (?) Платежной матрицы и вероятностей состояний природы
- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ
- **13.** Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Сэвиджа?
- (!) Платежной матрицы
- (?) Платежной матрицы и вероятностей состояний природы
- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ
- **14.** Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Гурвица?
- (?) Платежной матрицы
- (?) Платежной матрицы и вероятностей состояний природы
- (!) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ
- **15.** Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Лапласа-Байеса?
- (?) Платежной матрицы
- (!) Платежной матрицы и вероятностей состояний природы
- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ
- **16.** Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Ходжа-Лемана?
- (?) Платежной матрицы
- (?) Платежной матрицы и вероятностей состояний природы
- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (!) Платежной матрицы, вероятностей состояний природы и параметра λ
- **17.** Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Гермейера ?
- (?) Платежной матрицы
- (!) Платежной матрицы и вероятностей состояний природы
- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ

18. Компания кабельного телевидения планирует подключить к своей сети четыре новых района. Расстояние между районами и центром кабельного телевидения указаны на следующем графе, в котором телецентр изображается вершиной V_1 , а районы — вершинами V_2 , ..., V_5 .



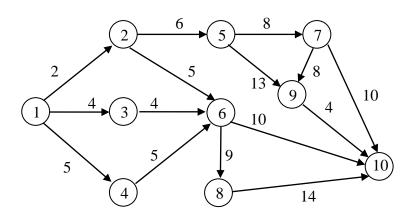
Тогда наиболее экономичная кабельная сеть имеет вид ...

(!)

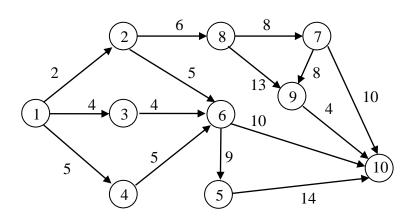
(?)(?)

19. Телекоммуникационная компания планирует подключить к своей сети пять домов. Расстояние между домами и сервером указаны на следующем графе, в котором сервер изображается вершиной V_1 , а районы — вершинами V_2 , ..., V_6 .

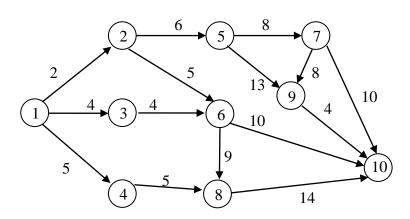
Тогда длина кабеля при наиболее экономичном подключении домов равна ...

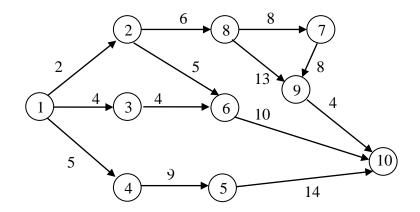

- (!) 37
- (?)36
- (?)41
- (?)29

20. Технологический комплекс производства продукции состоит из 10 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей


№ п. п.	Шифр операции	Продолжительность операции
1	1 2	2
2	1 3	4
3	1	5
4	2 5	6
5	2 56	5
6	3 >6	4
7	4	5
8	59	13
9	57	8
10	68	9
11	6 > 10	10
12	70	10
13	7	8
14	8 30	14
15	9 10	4

Тогда сетевым графиком для этого комплекса будет ...




(?)

(?)

(?)

21. Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей:

№ п. п.	Шифр операции	Продолжительность операции
1	1 >2	2
2	$\frac{1}{3}$	5
3	1	6
4	2 >5	4
5	35	8
6	36	3
7	4	7
8	4	6
9	56	6
10	59	8
11	6	3
12	<u>6</u> >8	10
13	<u>6</u> 9	4
14	7——————————————————————————————————————	8
15	7	4
16	8 40	9
17	9 31	5
18	9 512	7
19	10 512	4
20	11 512	8

Тогда критическое время равно ...

- (!) 43 yaca
- (?) 19 часов
- (?) 2 часа
- (?) 10 часов

22. Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей

№ п.п.	Шифр операции	Продолжительность операции
1	1 >2	2
2	1 3	5
3	1 54	6
4	2 5	4
5	3 5	8
6	3	3
7	4 56	7
8	4	6
9	5	6

10	5 >0	Q
		0
11	6	3
12	<u>6</u> >8	10
13	6 59	4
14	7 ->>	8
15	70	4
16	8 30	9
17	9 51	5
18	9 512	7
19	10 512	4
20	11 512	8

Тогда критическим путем является путь ...

$$(!)$$
 $1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 10 \rightarrow 12$

$$(?) \ 1 \rightarrow 3 \rightarrow 6 \rightarrow 7 \rightarrow 10 \rightarrow 12$$

$$(?) \ 1 \rightarrow 3 \rightarrow 6 \rightarrow 9 \rightarrow 12$$

$$(?) 1 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 10 \rightarrow 12$$

23. Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей

№ п. п.	Шифр операции	Продолжительность операции
1	1 >2	2
2	13	5
3	1	6
4	2 5	4
5	3 5	8
6	36	3
7	4 56	7
8	4	6
9	56	6
10	59	8
11	6	3
12	<u>6</u> 8	10
13	<u>6</u> 9	4
14	7——————————————————————————————————————	8
15	7	4
16	8 30	9
17	9 1	5
18	9 \$12	7
19	10 12	4
20	11 512	8

Тогда критической операцией является ...

- (!) 5 \rightarrow 6
- $(?) \ 6 \to 8$
- $(?) \ 6 \to 9$
- $(?) 4 \rightarrow 7$

24. Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей

№ п. п.	Шифр операции	Продолжительность операции
1	1 >2	2
2	1 3	5
3	1	6
4	2 5	4
5	3 5	8

6	3 >6	3
7	4	7
8	4	6
9	56	6
10	5 59	8
11	6	3
12	6 8	10
13	6 59	4
14	7	8
15	7	4
16	8 10	9
17	9 51	5
18	9 512	7
19	10 12	4
20	11	8

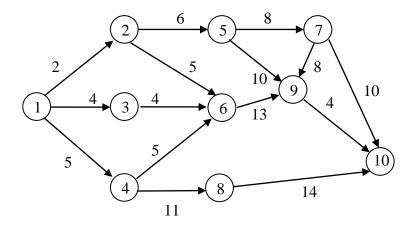
Тогда некритической операцией является ...

- $(!) 6 \rightarrow 8$
- $(?)\ 10 \to 12$
- (?) $3 \rightarrow 5$
- $(?) \ 1 \to 3$

25. Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей

№ п. п.	Шифр операции	Продолжительность операции
1	1 >2	2
2	1 3	5
3	1	6
4	2	4
5	3 55	8
6	3	3
7	4	7
8	4	6
9	5_56	6
10	5 9	8
11	6 3	3
12	6 8	10
13	6 59	4
14	7——————————————————————————————————————	8
15	70	4
16	8 30	9
17	9 51	5
18	9 52	7
19	10 12	4
20	11 12	8

Тогда некритическим путем является путь ...


- $(!) 6 \rightarrow 9 \rightarrow 12$
- $(?) \ 1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 10 \rightarrow 12$
- $(?) 8 \to 10 \to 12$
- $(?) \ 5 \rightarrow 6 \rightarrow 9 \rightarrow 11 \rightarrow 12$
- 26. Некритическим путем в сетевом графике является путь, ...
 - (!) начальный и конечный узлы которого лежат на критическом пути, а составляющие его операции являются некритическими;
 - (?) не являющийся критическим;

- (?) который не ведет из источника в сток;
- (?) состоящий из некритических операций.
- 27. Свободный резерв времени на критической операции сетевого графика ...
 - (!) равен нулю;
 - (?) положителен;
 - (?) является максимальным;
 - (?) является минимальным.
- 28. Свободный резерв времени на некритической операции сетевого графика ...
 - (!) неотрицателен;
 - (?) равен нулю;
 - (?) является максимальным;
 - (?) является минимальным.
- **29.** Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей

таолицеи		
№ п.п.	Шифр операции	Продолжительность операции
1	1 >2	2
2	1 3	5
3	1	6
4	2	4
5	3 5	8
6	36	3
7	4	7
8	4	6
9	5_56	6
10	59	8
11	6 57	3
12	6 8	10
13	6 59	4
14	7	8
15	7 30	4
16	8 10	9
17	9 31	5
18	9 12	7
19	10 12	4
20	11 512	8

Тогда свободный резерв времени на операции 5→9 равен...

- (!) 2 yaca
- (?) 1час
- (?) Зчаса
- (?) 0 часов
- 30. На рисунке

изображена сеть с заданными длинами дуг. Тогда кратчайшим путем, ведущим из источника в сток, является путь...

- (!) $1 \rightarrow 2 \rightarrow 5 \rightarrow 9 \rightarrow 10$
- $(?) \ 1 \to 4 \to 8 \to 10$
- $(?) \ 1 \to 4 \to 6 \to 9 \to 10$
- $(?) 1 \rightarrow 2 \rightarrow 5 \rightarrow 7 \rightarrow 10.$

3.3 Примерная тематика контрольных работ:

Гладкие конечномерная задача без ограничений.

Найти минимум функции

ВАРИАНТ 1

$$8x^3 + 12x^2z + 6xz^2 + z^3 - 6x - 3z + x^2 - 2xz + 2z^2 + 4y^2 + 4yz$$

ВАРИАНТ 2

$$x^{3} + 9x^{2}z + 27xz^{2} + 27z^{3} - 3x - 9z + x^{2} - 8xz + 17z^{2} + 4y^{2} + 4yz$$

ВАРИАНТ 3

$$y^{3} + 9y^{2}z + 27yz^{2} + 27z^{3} - 3y - 9z + 5x^{2} - 8xy + 16y^{2} + 4xz + z^{2}$$

ВАРИАНТ 4

$$y^{3} + 6y^{2}z + 12yz^{2} + 8z^{3} - 3y - 6z + 2x^{2} - 10xy + 25y^{2} + 10xz + 25z^{2}$$

ВАРИАНТ 5

$$y^{3} + 12y^{2}z + 48yz^{2} + 64z^{3} - 3y - 12z + 10x^{2} - 30xy + 25y^{2} + 4xz + 4z^{2}$$

ВАРИАНТ 6

$$x^{3} + 3x^{2}y + 12x^{2}z + 3xy^{2} + 24xyz + 48xz^{2} + y^{3} + 12y^{2}z$$

+ $48yz^{2} + 64z^{3} - 3x - 3y - 12z + 18x^{2} - 30xy + 25y^{2}$
+ $12xz + 4z^{2}$

ВАРИАНТ 7

$$x^{3} + 3x^{2}y + 3x^{2}z + 3xy^{2} + 6xyz + 3xz^{2} + y^{3} + 3y^{2}z + 3yz^{2} + z^{3} - 3x - 3y - 3z + 18x^{2} - 6xy + y^{2} + 6xz + z^{2}$$

ВАРИАНТ 8

$$x^{3} + 3x^{2}y + 3x^{2}z + 3xy^{2} + 6xyz + 3xz^{2} + y^{3} + 3y^{2}z$$

+ $3yz^{2} + z^{3} - 3x - 3y - 3z + 10x^{2} - 2xy + y^{2} + 12xz$
+ $4z^{2}$

ВАРИАНТ 9

$$x^{3} - 3x^{2}y + 3x^{2}z + 3xy^{2} - 6xyz + 3xz^{2} - y^{3} + 3y^{2}z$$

$$-3yz^{2} + z^{3} - 3x + 3y - 3z + 10x^{2} + 2xy + y^{2} + 12xz$$

$$+ 4z^{2}$$

ВАРИАНТ 10

$$x^{3} - 3x^{2}y + 3xy^{2} - y^{3} - 3x + 3y + 10x^{2} + 2xy + 14xz + y^{2} + 2yz + 5z^{2}$$

ВАРИАНТ 11

$$x^{3} - 6x^{2}y + 12xy^{2} - 8y^{3} - 3x + 6y + 10x^{2} + 2xy + 8xz + y^{2} + 2yz + 2z^{2}$$

ВАРИАНТ 12

$$x^{3} - 6x^{2}y + 12xy^{2} - 8y^{3} - 3x + 6y + 10x^{2} + 8xy + 2y^{2} - 6xz - 2yz + z^{2}$$

ВАРИАНТ 13

$$x^{3} - 9x^{2}y + 27xy^{2} - 27y^{3} - 3x + 9y + 34x^{2} + 16xy + 2y^{2} - 6xz - 2yz + z^{2}$$

ВАРИАНТ 14

$$8 x^{3} - 36 x^{2} y + 54 x y^{2} - 27 y^{3} - 6 x + 9 y + 26 x^{2} + 12 x y$$

+ 2 y^{2} - 10 x z - 10 y z + 25 z^{2}

ВАРИАНТ 15

$$8x^3 - 12x^2y + 6xy^2 - y^3 - 6x + 3y + 34x^2 + 22xy + 5y^2 - 6xz - 4yz + z^2$$

ВАРИАНТ 16

$$8x^3 - 36x^2y + 54xy^2 - 27y^3 - 6x + 9y + 34x^2 + 34xy + 17y^2 - 6xz - 8yz + z^2$$

ВАРИАНТ 17

$$27x^{3} - 27x^{2}z + 9xz^{2} - z^{3} - 9x + 3z + 34x^{2} + 34xy + 17y^{2} - 6xz - 8yz + z^{2}$$

ВАРИАНТ 18

$$-8x^{3} - 12x^{2}z - 6xz^{2} - z^{3} + 6x + 3z + 34x^{2} + 34xy + 17y^{2}$$
$$-36xz - 48yz + 36z^{2}$$

ВАРИАНТ 19

$$-8x^{3} - 12x^{2}y - 6xy^{2} - y^{3} + 6x + 3y + 34x^{2} + 60xy + 34y^{2}$$
$$-36xz - 60yz + 36z^{2}$$

ВАРИАНТ 20

$$-x^{3} - 3x^{2}y + 3x^{2}z - 3xy^{2} + 6xyz - 3xz^{2} - y^{3} + 3y^{2}z$$
$$-3yz^{2} + z^{3} + 3x + 3y - 3z + 34x^{2} + 30xy + 25y^{2}$$

ВАРИАНТ 21

$$y^{3} + 6y^{2}z + 12yz^{2} + 8z^{3} - 3y - 6z + 2x^{2} - 10xy + 25y^{2} + 10xz + 25z^{2}$$

ВАРИАНТ 22

$$x^{3} + 3x^{2}y + 12x^{2}z + 3xy^{2} + 24xyz + 48xz^{2} + y^{3} + 12y^{2}z$$

+ $48yz^{2} + 64z^{3} - 3x - 3y - 12z + 18x^{2} - 30xy + 25y^{2}$
+ $12xz + 4z^{2}$

ВАРИАНТ 22

$$x^{3} + 3x^{2}y + 3x^{2}z + 3xy^{2} + 6xyz + 3xz^{2} + y^{3} + 3y^{2}z$$

+ $3yz^{2} + z^{3} - 3x - 3y - 3z + 10x^{2} - 2xy + y^{2} + 12xz$
+ $4z^{2}$

ВАРИАНТ 23

$$x^{3} - 3x^{2}y + 3xy^{2} - y^{3} - 3x + 3y + 10x^{2} + 2xy + 14xz + y^{2} + 2yz + 5z^{2}$$

ВАРИАНТ 24

$$8 x3 - 36 x2 y + 54 x y2 - 27 y3 - 6 x + 9 y + 26 x2 + 12 x y + 2 y2 - 10 x z - 10 y z + 25 z2$$

ВАРИАНТ 25

$$x^{3} - 9x^{2}y + 27xy^{2} - 27y^{3} - 3x + 9y + 34x^{2} + 16xy + 2y^{2} - 6xz - 2yz + z^{2}$$

Задача нелинейного программирования. Имеется 4 вида ценных бумаг со средней доходностью m_0 , m_1 , m_2 , m_3 копеек на каждый рубль вложений соответственно. Известна ковариационная матрица A совместного распределения доходности бумаг. Требуется сформировать портфель ценных бумаг, распределив сумму, равную 1 тысяче рублей, обеспечив среднюю доходность портфеля равную 5n тысячам копеек, при условии наименьшего риска.

$$m_0=3, m_1=9, m_2=15, m_3=27, A = \begin{pmatrix} m & 1 & 1 \\ 1 & 9/2 & 2n \\ 1 & m & n \end{pmatrix}$$

Задачи линейного программирования:

Задача оптимального производства продукции. Предприятие планирует выпуск двух видов продукции I и II, на производство которых расходуется три вида сырья A, B, и C. Потребность a_{ij} на каждую единицу j-го вида продукции i-го вида сырья, запас b_i соответствующего сырья и прибыль C_j от реализации единицы j-го вида продукции задана таблицей:

Виды	Виды пр	оодукции	Запасы
сырья	I	II	сырья
A	$a_{11} = n$	$a_{12} = 2$	$b_1 = mn + 5$
В	$a_{21} = 1$	$a_{22} = 1$	$b_2 = m + n + 3$
С	$a_{31} = 2$	$a_{32} = m+1$	$b_3 = mn + +4m + n + 4$
Прибыль	$c_1 = m + 2$	$c_2 = n + 1$	
План (ед)	x_1	x_2	

Для производства двух видов продукции I и II с планом x_1 и x_2 единиц составит целевую функцию прибыли Z и соответствующую систему ограничений по запасам сырья, предполагая, что требуется изготовить в сумме не менее n единиц обоих видов продукции.

Составить оптимальный план (x_1, x_2) производства продукции, обеспечивающий максимальную прибыль Z_{\max} . Определить остатки каждого вида сырья. Задачу решить симплекс-методом.

Построить по полученной системе ограничений многоугольник допустимых решений и найти оптимальный план производства геометрическим путем. Определить соответствующую прибыль $Z_{\rm max}$.

Произвести анализ модели на чувствительность. Найти двойственную цену дефицитных видов сырья, максимальное значение закупок дефицитных видов сырья, которое приносит прибыль при сохранении статуса сырья, а также границы изменения цены на товар, при которых найденный план остается оптимальным.

Транспортные задачи

Задача №1

2	Потребности	B_1	B_2	B_3
Запа	асы	$b_1 = 190$	$b_2 = 120$	$b_3 = 10m$
$A_{\rm l}$	$a_1 = 100$	4	2	m
A_2	$a_2 = 200$	n	5	3
A_3	$a_3 = 60 + 10n$	1	m+1	6

Найти план с минимальной суммарной стоимостью перевозок.

Задача №2

Завод		Магазины					
	№ 1	№ 2	№ 3	№4	№5	заводов	
I	n+m	m	2 <i>n</i>	n+m	n	10m	
II	2 <i>m</i>	m+5	n	2n+m	m+n	20n	
III	n+3	m+1	n+2	2m+n	n	10(m+2n)	
Потребности	5 <i>m</i>	10 <i>n</i>	10n	5 <i>m</i> +10 <i>n</i>	10 <i>m</i>		
магазинов							

В городе имеется три хлебозавода, которые выпускают одинаковую продукцию и развозят ее по 5 магазинам. Стоимость доставки пропорциональна расстоянию от завода до магазина. Определите план поставок, минимизирующий суммарные транспортные расходы магазинов.

Теория игр

Задача №1. Рассматривается антагонистическая игра двух лиц с нулевой суммой. Найти верхнюю и нижнюю цену игры.

$$\begin{pmatrix} 2 & n & m \\ n+m & 4 & n+6 \\ m & 3n & 5m \\ m+2n & n & 6 \end{pmatrix}$$

Задача №2. Рассматривается антагонистическая игра двух лиц с нулевой суммой $\begin{pmatrix} m & n & m+n & 2m+n \end{pmatrix}$

и платежной матрицей
$$\begin{pmatrix} m & n & m+n & 2m+n \\ m+n & m+2n & n & m \end{pmatrix}$$

Найти цену игры и оптимальные смешанные стратегии игроков графическим способом.

Задача №3. Игра решена симплекс-методом

Б	y_1	y_2	y_3	S_1	S_2	S_3	
y_1	1	0	0	n	-m	-3/m	3m+n
							5m+2n
y_2	0	1	0	4n/5	1	-m/5n	3m+2n-3
							5m+2n
y_3	0	0	1	2/3	-2	m/4n	m+n+3
							$\overline{5m+2n}$
Z	0	0	0	4m+1	2m+2n	m+2n-1	7m+4n
				5m+2n	$\overline{5m+2n}$	5m+2n	$\overline{5m+2n}$

Найти цену игры и оптимальные смешанные стратегии игроков.

Принятие решений в условиях неопределенности. Проанализируйте матрицу доходов и найдите операции, оптимальные по критериям Лагранжа, Сэвиджа, Вальда и Гурвица ($\lambda = 1/2$)

$$Q = \begin{pmatrix} m & 4 & 6 & 12 \\ 2 & 6 & 8 & 14 \\ n & 1 & 2 & 8 \\ 2 & 3 & n+1 & 10 \end{pmatrix}$$

Сетевое и календарное планирование. Сетевая модель состоит из 9 этапов и включает в себя следующие операции:

Операция	1→2	1→3	1→4	2→5	3→5	4→5	2->6
Продолжительность	m	n	m+2	n+1	m+3	n+2	m+2
Число рабочих,	5	3	2	4	3	6	4
занятых на							
операции							

Операция	4→8	5→6	5→7	5→8	6→9	7→9	8→9
Продолжительность	n	n+2	m+1	n+1	n+1	n+2	m+3

Число рабочих,	5	2	1	5	3	2	4
занятых на							
операции							

Постройте сетевой граф модели. Для каждого i определите раннее начало операций $\langle i \rangle$, стартующих на i-м этапе, и позднее окончание операций [i], заканчивающихся на i-м этапе. Для каждой операции вида $i \rightarrow j$ определите раннее и позднее начало операции, и ранее и позднее окончание операции, а также полный и свободный резерв операции. Выпишете все критические пути. Постройте календарный график потребности в рабочей силе, сначала исходя из ранних сроков начала операций, а затем - из поздних сроков начала операций. Постройте календарный график, в котором потребность в рабочей силе распределена максимально равномерно по времени.

Динамическое программирование. Фирма, в состав которой входит три предприятия, принимает решение о комплексной реконструкции этих предприятий. В следующей таблице указаны 4 возможных решения по каждому предприятию, затраты c_i на реализацию таких решений и чистая прибыль R_i как

результат принятого решения (в млн. руб.)

	1-е пр	редприятие	2-е пр	едприятие	3-е предприятие	
	c_1	R_1	c_2	R_2	<i>C</i> ₃	R_3
Оставляем в прежнем виде	0	0	0	0	0	0
Малая механизация	m	m+n	1	1+m	n	n+m
Частичная модернизация	m+5	2m+n+3	5	2n+m	n+5	n+3m
Полная реконструкция	m+n+5	2m+3n+3	n+5	3n+m	n+15	5n+6m

Требуется, используя метод динамического программирования, составить план реконструкции предприятий, обеспечивающий максимальную прибыль, при условии, что фирма может вложить в реконструкцию предприятий не более m+2n+15 млн. руб.\

Каждому студенту при поступлении присваивается учебный шифр. Он указан в зачетной книжке и студенческом билете. Вариант задания выбирается в соответствии с двумя последними цифрами шифра A и B. Каждая задача зависит от двух числовых параметров m и n, которые определяются по цифрам A и B из таблип:

A	0	1	2	3	4	5	6	7	8	9
m	2	6	4	8	8	2	6	4	4	6
В	0	1	2	3	4	5	6	7	8	9

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Формой контроля знаний являются две текущие аттестации в форме тестов,

итоговая аттестация в форме экзамена.

итого	вая ат		в форме	экзамена.	T	
Не- деля те- ку- щего кон- троля	Вид оце- ноч- ного сред- ства	Код компе- тенций, оцени- вающий знания, умения, навыки	Содержа- ние оце- ночного средства	Требования к выполнению	Срок сдачи (неделя се- местра)	Критерии оценки по содержанию и качеству с указанием баллов
	Те- сти- рова- ние 1,2	ОПК-5 ПК-3	20 вопросов	Компьютерное тестирование; время, отведенное на процедуру - 40 минут	Результаты тестирования предоставляются в день проведения процедуры	Критерии оценки определяются процентным соотношением. Не явка - 0 Удовлетворительно - от 51% правильных ответов. Хорошо - от 70%. Отлично — от 90%. Максимальная оценка — 5 баллов
Со- гласно графи- ка учеб- ного про- цесса	Эк-	ОПК-5 ПК-3	1 теоретический вопрос и 3 задачи на различные темы курса	Экзамен проводится в письменной форме, путем ответа на вопросы. Время, отведенное на процедуру – 60 минут.	Результаты предоставля- ются в день проведения экзамена	Критерии оценки: «Отлично»: знание основных понятий предмета; умение использовать и применять полученные знания на практике; работа на практических занятиях; знание основных научных теорий, изучаемых предметов; ответ на вопросы билета. «Хорошо»: знание основных понятий предмета; умение использовать и применять полученные знания на практике; работа на практических занятиях; знание основных научных теорий, изучаемых предметов; частичный ответ на вопросы билета «Удовлетворительно»: демонстрирует частичные знания по темам дисциплин; незнание неумение использовать и применять полученные знания на практике; работал на практических занятиях «Неудовлетворительно»: демонстрирует частичные знания по темам дисциплин; незнание основных понятий предмета; неумение использовать и применять полученные знания на практике;

		не работал на практических занятиях;
		не отвечает на вопросы.

4.1. Типовые вопросы, выносимые на экзамен

- 1. Задачи на минимум.
- 2. Гладкие конечномерная задача без ограничений.
- 3. Теорема Ферма как необходимое условие локального экстремума.
- 4. Гессиан функции.
- 5. Необходимые и достаточные условия экстремума второго порядка.
- 6. Положительная и отрицательная определенность квадратичной формы.
- 7. Критерий Сильвестра.
- 8. Конечномерные задачи с ограничениями типа равенства
- 9. Конечномерные задачи с ограничениями типа неравенства.
- 10. Формулировка теоремы о неявной функции для линейной системы уравнений.
- 11. Формулировка теоремы о неявной функции для нелинейной системы уравнений.
- 12. Формулировка принципа Лагранжа для задач со смешанными ограничениями типа равенства
- 13. Формулировка принципа Лагранжа для задач со смешанными ограничениями типа неравенства.
- 14. Достаточные условия оптимальности в задачах с ограничениями.
- 15.Постановка задачи об определении портфеля ценных бумаг Марковица—Тобина с наименьшим риском при заданном среднем уровне дохода.
- 16. Алгоритм решения задачи с использованием принципа Лагранжа.
- 17. Формулировка задачи линейного программирования (ЛП).
- 18.Стандартная (нормальная) и каноническая формы представления задачи ЛП и сведение к ним.
- 19. Свойства допустимого множества и оптимального решения в задаче ЛП.
- 20.Основные представления о методах решения задач ЛП, основанных на направленном переборе вершин (симплекс-метод и др.).
- 21. Двойственные задачи линейного программирования.
- 22. Теоремы двойственности.
- 23.Интерпретация двойственных переменных.
- 24. Анализ чувствительности оптимального решения к параметрам задачи линейного программирования.
- 25. Некоторые специальные задачи линейного программирования (транспортная, производственно-транспортная и т.д.).
- 26.Определение антагонистической игры в нормальной форме.
- 27. Равновесная ситуация. Чистые стратегии.
- 28.Оптимальные смешанные стратегии и их основные свойства.
- 29.Поиск оптимальных стратегий с помощью решения задач линейного программирования.
- 30.Понятие о корпоративных играх и о различных определениях их решений.

- 31. Задача выбора решений в условиях неопределенности.
- 32. Критерии выбора решений в условиях неопределенности (принцип гарантированного результата, критерий Гурвица, критерий Байеса-Лапласа, критерий Сэвиджа).
- 33. Применение принципа гарантированного результата в задачах экономического планирования.

Итоговое начисление баллов по дисциплине осуществляется в соответствии с разработанной и внедренной балльно-рейтинговой системой контроля и оценивания уровня знаний и внеучебной созидательной активности обучающихся.

ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ КАФЕДРА МАТЕМАТИКИ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ «МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ»

Направление подготовки: 01.03.02 Прикладная математика и информатика

Профиль: Программирование, математическое моделирование

Уровень высшего образования: бакалавриат

Форма обучения: очная

Королев 2023

1. Обшие положения

Целью изучения дисциплины является

- Развить системное мышление слушателей путем детального анализа подходов к математическому моделированию и сравнительного анализа разных типов моделей;
- Ознакомить слушателей с математическими свойствами моделей и методов оптимизации, которые могут использоваться при анализе и решении широкого спектра экономических задач.

Задачи дисциплины:

- освоение студентами базовых знаний в области построения математических моделей.
- получение студентами умений и навыков проведения математического моделирования и анализа в области их профессиональной деятельности.

2. Указания по проведению практических занятий

Практическое занятие 1.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов

Тема и содержание практического занятия: Тема 1. Задача нелинейного программирования: Конечномерные задачи с ограничениями типа равенства и неравенства. Принцип Лагранжа в задачах с ограничениями в форме равенств. Продолжительность занятия -4 ч.

Практическое занятие 2.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов

Тема и содержание практического занятия: Тема 1. Задача нелинейного программирования: Решение задачи Марковица - Тобина о портфеле ценных бумаг наименьшего риска при заданной средней доходности.

Продолжительность занятия – 4 ч.

Практическое занятие 3.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов

Тема и содержание практического занятия: Тема 2. Задача линейного программирования: Метод полных жордановых исключений преобразования систем линейных уравнений. Симплекс метод.

Продолжительность занятия -2 ч.

Практическое занятие 4.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов

Тема и содержание практического занятия: Тема 2. Задача линейного программирования: Двойственные задачи линейного программирования. Анализ чувствительности оптимального решения к параметрам задачи линейного программирования.

Продолжительность занятия -2 ч.

Практическое занятие 5-6.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов

Тема и содержание практического занятия: Тема 2. Задача линейного программирования: Транспортная задача. Метод потенциалов. Правило северо-западного угла и наименьшей стоимости для составления начального плана поставок. Открытые и закрытые модели.

Продолжительность занятия – 4 ч.

Практическое занятие 7-8.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов

Тема и содержание практического занятия: Тема 3. Теория игр: Равновесная ситуация. Чистые стратегии. Принцип минимакса. Оптимальные смешанные стратегии. Методы решения матричных игр: аналитический — для игры 2×2 и графический — для игр 2×2 , $2\times n$, $m\times2$.

Продолжительность занятия – 4 ч.

Практическое занятие 9-10.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов

Тема и содержание практического занятия: Тема 3. Теория игр: Сведение решения матричной игры типа $m \times n$ к решению двойственных задач линейного программирования.

Продолжительность занятия – 4 ч.

Практическое занятие 11-12.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов

Тема и содержание практического занятия: Тема 4. Оптимизация в условиях неопределенности: Задача выбора решений в условиях полной неопределенности.

Правило максимального пессимизма Вальда. Понятие риска и правило Сэвиджа минимального риска. Правило Гурвица.

Продолжительность занятия – 4 ч.

Практическое занятие 13-14.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов

Тема и содержание практического занятия: Тема 4. Оптимизация в условиях неопределенности: Задача выбора решений в условиях частичной неопределенности.

Продолжительность занятия – 4 ч.

Практическое занятие 15.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов

Тема и содержание практического занятия: Тема 5. Основные понятия многокритериальной оптимизации: Задачи многокритериальной оптимизации. Доминирование и оптимальность по Парето. Сетевые задачи.

Продолжительность занятия -2 ч.

Практическое занятие 16.

Вид практического занятия: смешанная форма практического занятия.

Образовательные технологии: самостоятельное решение и групповое обсуждение результатов

Тема и содержание практического занятия: Тема 5. Основные понятия многокритериальной оптимизации: Графическое и табличное решение задачи расчета сетевой модели. Определение ресурсов и последовательное улучшение сетевого плана. Построение календарного графика и распределение ресурсов.

Продолжительность занятия -2 ч.

3. Указания по проведению лабораторного практикума

Не предусмотрено учебным планом.

4. Указания по проведению самостоятельной работы студентов

Цель самостоятельной работы: подготовка к лекционным и практическим занятиям, обзорам по предложенным темам, подготовка к промежуточной аттестации, выполнение и защиту контрольной работы, подготовку к зачету и экзамену, а также подготовка бакалавров к самостоятельному научному творчеству.

Виды самостоятельной работы представлены в таблице.

№ п/п	Наименование бло- ка (раздела) дисци- плины	Виды СРС
1	Темы 1-5	 Подготовка к практическим занятиям по материалам лекций и учебной литературы. Выполнение практических заданий Самостоятельное изучение некоторых вопросов дисциплины.

Вопросы для самостоятельной работы

- 1. Решение систем линейных уравнений итерационными методами (принцип сжимающих отображений, метод Зейделя).
- 2. Линейные операторы в Υ^n . Собственные числа и собственные векторы.
- 3. Квадратичные формы в Υ^n .
- 4. Теорема о неявной функции для системы уравнений в конечномерном пространстве. Множество касательных векторов. Базис. Ограничение квадратичной формы на подпространство.
- 5. Выпуклая оптимизация. Теорема Куна-Таккера.
- 6. Множество критических вариаций в задачах с ограничениями в форме неравенств.
- 7. Достаточные условия локального экстремума в задачах со смешанными ограничениями.
- 8. Решение задачи составления рациона методами линейного программирования.
- 9. Решение задачи о распределении ресурсов методами линейного программирования.
- 10. Решение задачи о загрузке станков методами линейного программирования.
- 11. Решение транспортной задачи по критерию времени.
- 12. Решение задачи оптимального раскроя материалов методами целочисленного программирования.
- 13. Решение задачи оптимального использования оборудования методами целочисленного программирования.
- 14. Решение задачи распределения ресурсов по неоднородным этапам материалов методами динамического программирования.
- 15. Решение задачи о резервировании ресурсов методами динамического программирования.
- 16. Решение задачи распределения ресурсов между тремя и более отраслями методами динамического программирования.
- 17. Распределение ресурсов со вложением доходов в производство.
- 18. Решение задачи динамического программирования с учетом предыстории процесса.
- 19. Градиентные методы решения задач нелинейного программирования.

5. Указания по проведению контрольных работ для обучающихся очной формы обучения

5.1. Требования к структуре

Каждому студенту при поступлении присваивается учебный шифр. Он указан в зачетной книжке и студенческом билете. Вариант определяется значениями m и n, которые выбираются с учетом двух последних цифр учебного шифра. Номера задач, входящих в вариант, определяются преподавателем.

5.2. Требования к оформлению

Каждая контрольная работа содержит определенное количество примеров и задач. При выполнении их необходимо придерживаться следующих правил:

- 1. Контрольную работу надо выполнить в отдельной тетради, оставляя поля для замечаний преподавателя. В конце работы нужно оставить 3-4 чистых страницы, которые, возможно, понадобятся для исправления решений.
- 2. В заголовке работы должны быть разборчиво написаны: фамилия, имя и отчество, учебный шифр, номер контрольной работы (ее части), название дисциплины. Заголовок надо поместить на обложку тетради. Здесь же указать дату выполнения контрольной работы.
- 3. Решение задач надо располагать в порядке номеров, указанных в задании, сохраняя номер задач своего варианта.
- 4. Перед решением каждой задачи надо полностью выписать ее условие, заменив, где надо, общие данные контрольными из своего варианта.
 - 5. Решения задач излагайте аккуратно, объясняя основные действия, выписывая нужные формулы, делая необходимые чертежи.
- 6. После получения прорецензированной работы исправьте все ошибки и недочеты, вписав исправления на оставленных чистых страницах.

Работа засчитывается, если она при проверке (или после устранения недочетов) преподавателем получает положительную оценку (зачет). Студенты, не получившие зачета по контрольной работе, к диф. зачету/экзамену не допускаются. Зачетные контрольные работы обязательно предъявляются на экзамене.

6. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Шапкин А.С. Математические методы и модели исследования операций: учебник / А.С. Шапкин, В.А. Шапкин. 7-е изд. Москва: Дашков и К°, 2019. 398 с.: ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=573373
- 2. Донкова И.А. Исследование операций и методы оптимизации: учебное пособие: [16+] / И.А. Донкова; Тюменский государственный университет. Тюмень: Тюменский государственный университет, 2017. 196 с.: ил. Режим доступа: по подписке. —

URL: http://biblioclub.ru/index.php?page=book&id=572102

Дополнительная литература:

- 1. Каштаева С. В. Исследование операций: учебное пособие / С. В. Каштаева. Пермь: ПГАТУ, 2020. 77 с. ISBN 978-5-94279-499-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/156714
- 2. Тынкевич М. А. Практикум по дисциплине «Исследование операций и методы оптимизации» (нелинейная оптимизация и статистические решения): учебное пособие / М. А. Тын-кевич, Г. Н. Речко. Кемерово: КузГТУ имени Т.Ф. Горбачева, 2018. 58 с. ISBN 978-5-906969-65-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/105430
- 3. Бурда, А. Г. Исследование операций и методы оптимизации: учебное пособие / А. Г. Бурда, В. В. Осенний. Краснодар: КубГАУ, 2020. 181 с. ISBN 978-5-907346-07-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/254312

7.Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Интернет-ресурсы:

http://www.znanium.com/ - электронно-библиотечная система

http://www.e.lanbook.com/ - ЭБС Издательства "ЛАНЬ"

http://www.rucont.ru/- электронно-библиотечная система

http://www.biblioclub.ru/ -университетская библиотека онлайн

8.Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: MSOffice

Информационные справочные системы: Электронные ресурсы образовательной среды Университета.