

|   |          |                 | «УТВЕРЖДАЮ»     |
|---|----------|-----------------|-----------------|
|   |          |                 | И.о. проректора |
| _ |          |                 | А.В. Троицкий   |
|   | <b>«</b> | <b>&gt;&gt;</b> | 2023 г.         |

#### ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ

#### КАФЕДРА МАТЕМАТИКИ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН

## РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «АЛГЕБРА ЛОГИКИ И ДИСКРЕТНЫЙ АНАЛИЗ»

Направление подготовки: 09.03.04 Программная инженерия

Направленность (профиль): Проектирование и разработка программного

обеспечения

Уровень высшего образования: бакалавриат

Форма обучения: очная

Королёв 2023 Рабочая программа является составной частью основной профессиональной образовательной программы и проходит рецензирование со стороны работодателей в составе основной профессиональной образовательной программы. Рабочая программа актуализируется и корректируется ежегодно.

Автор: Борисова О.Н. Модуль «Математика» Рабочая программа дисциплины: «Алгебра логики и дискретный анализ». – Королев МО: «Технологический университет», 2023.

Рецензент: к.т.н., доцент Бугай И.В.

Рабочая программа составлена в соответствии с требованиями федерального Государственного образовательного стандарта высшего образования по направлению подготовки бакалавров: 09.03.04 – Программная инженерия и Учебного плана, утвержденного Ученым советом Университета.

Протокол № 9 от 11.04.2023 г.

#### Рабочая программа рассмотрена и одобрена на заседании кафедры:

| Заведующий кафедрой (ФИО, ученая степень, звание, подпись) | Бугай И.В.,<br>к.т.н., до-<br>цент |      |      |      |
|------------------------------------------------------------|------------------------------------|------|------|------|
| Год утверждения (переутверждения)                          | 2023                               | 2024 | 2025 | 2026 |
| Номер и дата про-<br>токола заседания<br>кафедры           | №12 от<br>04.07.2023               |      |      |      |

Рабочая программа согласована:

Руководитель ОПОП ВО

О. М. Баранова, к.т.н., доцент

#### Рабочая программа рекомендована на заседании УМС:

| Год утверждения (переутверждения)            | 2023                    | 2024 | 2025 | 2026 |
|----------------------------------------------|-------------------------|------|------|------|
| Номер и дата про-<br>токола заседания<br>УМС | № 5 от<br>11.04.2023 г. |      |      |      |

## 1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Целью изучения дисциплины является:

- 1. Формирование систематизированных знаний в области математической логики, представлений о проблемах оснований математики и роли математической логики в их решении.
- 2. Формирование основных знаний о принципах построения алгоритмов, а также, методах анализа их свойств и структуры.
- 3. Формирование умения логически развивать отдельные формальные теории и устанавливать связь между ними.
- 4. Формирование умения конструировать логически непротиворечивые алгоритмы и применять стандартные алгоритмы дискретного программирования.
- 5. Формирование суждений по соответствующим профессиональным, научным и этическим проблемам; владение способами доказательств утверждений и теорем как основной составляющей когнитивной и коммуникативной функций личности;

Дисциплина направлена на формирование следующих компетенций:

- **(УК-1)** Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач;
- **(УК-2)** Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений;
- **(ОПК-1)** Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности.

#### Основными задачами дисциплины являются:

- обучение фундаментальным методам современной количественной и качественной теории дифференциальных уравнений и уравнений в частных производных, как средства математического моделирования детерминированных явлений;
- ознакомить студентов с методами решения интегрируемых типов дифференциальных уравнений, методами качественного исследования и применения дифференциальных уравнений в математическом моделировании динамических процессов;
- научить студентов самостоятельно расширять теоретические знания.

Показатель освоения компетенции отражают следующие индикаторы:

#### Трудовые действия:

- Осуществляет поиск информации для решения поставленной задачи по различным типам запросов;
- При обработке информации отличает факты от мнений, интерпретаций, оценок, формирует собственные мнения и суждения, аргументирует свои выводы, в том числе с применением философского понятийного аппарата
- Оценивает решение поставленных задач в зоне своей ответственности в соответствии с запланированными результатами контроля, при необходимости корректирует способы решения задач
- Применяет методы математики, физики, вычислительной техники и программирования при выполнении конкретных задач, проектов;

#### Необходимые умения:

- Определяет и ранжирует информацию, требуемую для решения поставленной задачи;
- Определяет связи между поставленными задачами и ожидаемые результаты их решения;
- В рамках поставленных задач определяет имеющиеся ресурсы и ограничения, действующие правовые нормы
- Использует естественнонаучные и общеинженерные знания, методы математического анализа и моделирования для решения стандартных профессиональных задач;
- Выбирает методы математики, физики, вычислительной техники и программирования при выполнении конкретных задач, проектов, теоретического и экспериментального исследования объектов профессиональной деятельности;

#### Необходимые знания:

- Анализирует задачу, выделяя ее базовые составляющие;
- Анализирует пути решения проблем мировоззренческого, нравственного и личностного характера на основе использования основных философских идей и категорий в их историческом развитии и социально-культурном контексте
- Формулирует проблему, решение которой напрямую связано с достижением цели проекта;
- Анализирует план-график реализации проекта в целом и выбирает способ решения поставленных задач
- Знает основы математики, вычислительной техники и программирования

#### 2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Алгебра логики и дискретный анализ» относится к обязательной части основной профессиональной образовательной программы подготовки по направлению подготовки бакалавриата 09.03.04 «Программная инженерия».

Дисциплина реализуется кафедрой математических и естественнонаучных дисциплин.

Изучение данной дисциплины базируется на знаниях и умениях, полученных в рамках обучения по программам общего и среднего профессионального образования.

#### 3. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины для студентов очной формы составляет 4 зачетных единицы, 144 часа.

Таблица 1

| Виды занятий                | Всего ча-<br>сов | Семестр 1 | Семестр | Семестр | Семестр |
|-----------------------------|------------------|-----------|---------|---------|---------|
| Общая трудоемкость          | 144              | 144       |         |         |         |
| Аудиторные занятия          | 48               | 48        |         |         |         |
| Лекции (Л)                  | 16               | 16        |         |         |         |
| Практические занятия (ПЗ)   | 32               | 32        |         |         |         |
| Лабораторные работы (ЛР)    | -                | -         |         |         |         |
| Практическая подготовка     | -                | -         |         |         |         |
| Самостоятельная работа      | 96               | 96        |         |         |         |
| Курсовые работы (проекты),  | -                | -         |         |         |         |
| Расчетно-графические работы | -                | -         |         |         |         |
| Контрольная работа,         | +                | +         |         |         |         |
| домашнее задание            | -                | -         |         |         |         |
| Текущий контроль знаний     | Тест             | Тест      |         |         |         |
| (7 - 8, 14 - 15 недели)     |                  |           |         |         |         |
| Вид итогового контроля      | Экзамен          | Экзамен   |         |         |         |

#### 4. Содержание дисциплины

#### 4.1. Темы дисциплины и виды занятий

Таблина 2

| Наименование тем      | Лекции,<br>час. | Практи-<br>ческие<br>занятия,<br>час. | Лаборатор-<br>ные заня-<br>тия, час | Занятия<br>в интер-<br>активной<br>форме,<br>час. | Код<br>компе-<br>тенций |
|-----------------------|-----------------|---------------------------------------|-------------------------------------|---------------------------------------------------|-------------------------|
| Тема 1. Основные по-  | 2               | 4                                     | -                                   | -                                                 | УК-1                    |
| нятия теории множеств |                 |                                       |                                     |                                                   | УК-2                    |
|                       |                 |                                       |                                     |                                                   | ОПК-1                   |

| Тема 2.               | 4  | 8  | - | 4  | УК-1  |
|-----------------------|----|----|---|----|-------|
| Исчисление высказы-   |    |    |   |    | УК-2  |
| ваний                 |    |    |   |    | ОПК-1 |
| Тема 3.               | 4  | 8  | - | 4  | УК-1  |
| Исчисление предикатов |    |    |   |    | УК-2  |
|                       |    |    |   |    | ОПК-1 |
| Тема 4. Элементы тео- | 2  | 4  | - | -  | УК-1  |
| рии алгоритмов        |    |    |   |    | УК-2  |
|                       |    |    |   |    | ОПК-1 |
| Тема 5. Некоторые ал- | 4  | 8  | - | 4  | УК-1  |
| горитмы дискретной    |    |    |   |    | УК-2  |
| оптимизации           |    |    |   |    | ОПК-1 |
|                       | 16 | 32 | - | 12 |       |

#### 4.2.Содержание тем дисциплины

#### Тема 1. Основные понятия теории множеств

Понятие множества. Способы задания множеств. Подмножества. Операции над множествами. Алгебра множеств отношения. Отношение эквивалентности.

#### Тема 2. Исчисление высказываний

Сентенциональные связки и таблицы истинности. Общезначность. Основные тавтологии. Теоремы. Эквивалентность высказываний. Совершенные дизъюнктивные и конъюнктивные нормальные формы.

Логические следствия. Теоремы о логических следствиях. Доказательства с помощью тавтологий. Противоречивость системы высказываний. Доказательство от противного.

#### Тема 3. Исчисление предикатов

Исчисление предикатов. Символизация обычного языка. Термы, кванторы. Область действия квантора. Оценочные процедуры для формул в исчисление предикатов. Общезначность.

#### Тема 4. Элементы теории алгоритмов

Определение и представление алгоритма. Анализ алгоритма. Классификация алгоритма по временной сложности.

Вычислимые функции и алгоритмы. Рекурсивные функции. Нормальный алгоритм Маркова. Машины Тьюринга.

#### Тема 5. Некоторые алгоритмы дискретной оптимизации

Задача о назначениях. Венгерский метод. Наикратчайший путь в сети. Задачи на графах. Задача коммивояжера, задача составления расписаний, задача о максимальном потоке в сети.

#### 5.Перечень учебно-методического обеспечения для самостоятельной работы по дисциплине

Методические указания для самостоятельной работы обучающихся по освоению дисциплины представлены в Приложении 2.

## 6.Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Структура фонда оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине приведена в Приложении 1.

## 7.Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

#### Основная литература:

- 1. Папшев, С. В. Дискретная математика. Курс лекций для студентов естественнонаучных направлений подготовки : учебное пособие / С. В. Папшев. Санкт-Петербург : Лань, 2019. 192 с. ISBN 978-5-8114-3292-9. Текст : электронный // Лань : электронно-библиотечная система. URL: <a href="https://e.lanbook.com/book/113904">https://e.lanbook.com/book/113904</a>. Режим доступа: для авториз. пользователей.
- 2. Шевелев, Ю. П. Дискретная математика : учебное пособие / Ю. П. Шевелев. 4-е изд., стер. Санкт-Петербург : Лань, 2019. 592 с. ISBN 978-5-8114-4284-3. Текст : электронный // Лань : электроннобиблиотечная система. URL: <a href="https://e.lanbook.com/book/118616">https://e.lanbook.com/book/118616</a>. Режим доступа: для авториз. пользователей.
- 3. Матросов, В. Л. Математическая логика: учебник для бакалавриата: [16+] / В. Л. Матросов, М. С. Мирзоев. Москва: Прометей, 2020. 229 с.: ил. Режим доступа: по подписке. URL: <a href="https://biblioclub.ru/index.php?page=book&id=576107">https://biblioclub.ru/index.php?page=book&id=576107</a>. Библиогр. в кн. ISBN 978-5-907244-03-0. Текст: электронный.
- 4. Панкратов, Е. Л. Введение в алгебру логики: учебно-методическое пособие / Е. Л. Панкратов. Нижний Новгород: ННГУ им. Н. И. Лобачевского, 2021. 16 с. Текст: электронный // Лань: электронно-библиотечная система. URL: <a href="https://e.lanbook.com/book/282836">https://e.lanbook.com/book/282836</a>. Режим доступа: для авториз. пользователей.

#### Дополнительная литература:

1. Шевелев, Ю. П. Прикладные вопросы дискретной математики : учебное пособие / Ю. П. Шевелев. — Санкт-Петербург : Лань, 2018. — 356 с. — ISBN 978-5-8114-2762-8. — Текст : электронный // Лань : электроннобиблиотечная система. — URL: <a href="https://e.lanbook.com/book/101846">https://e.lanbook.com/book/101846</a>. — Режим доступа: для авториз. пользователей.

- 2. Авдеюк, О. А. Лекции и практикум по основам дискретной математики и математической логике: учебно-методическое пособие / О. А. Авдеюк, Л. В. Дружинина, И. В. Приходькова. Волгоград: ВолгГТУ, 2019. 316 с. ISBN 978-5-9948-3251-6. Текст: электронный // Лань: электроннобиблиотечная система. URL: <a href="https://e.lanbook.com/book/157217">https://e.lanbook.com/book/157217</a>. Режим доступа: для авториз. пользователей.
- 3. Иванисова, О. В. Дискретная математика и математическая логика : учебное пособие : [16+] / О. В. Иванисова, И. В. Сухан. Москва ; Берлин : Директ-Медиа, 2020. 354 с. Режим доступа: по подписке. URL: <a href="https://biblioclub.ru/index.php?page=book&id=600488">https://biblioclub.ru/index.php?page=book&id=600488</a>. ISBN 978-5-4499-1729-4. DOI 10.23681/600488. Текст : электронный.
- 4. Мальцев, И. А. Дискретная математика / И. А. Мальцев. 4-е изд., стер. Санкт-Петербург: Лань, 2022. 292 с. ISBN 978-5-507-45354-2. Текст: электронный // Лань: электронно-библиотечная система. URL: <a href="https://e.lanbook.com/book/265193">https://e.lanbook.com/book/265193</a>. Режим доступа: для авториз. пользователей..

## 8.Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

#### Интернет-ресурсы:

http://www.znanium.com/ - электронно-библиотечная система http://www.e.lanbook.com/ - ЭБС Издательства "ЛАНЬ" http://www.rucont.ru/- электронно-библиотечная система http://www.biblioclub.ru/ -университетская библиотека онлайн

#### 9. Методические указания для обучающихся по освоению дисциплины

Методические указания для обучающихся по освоению дисциплины приведены в Приложении 2 к настоящей рабочей программе.

## 10.Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

**Перечень программного обеспечения:** Microsoft Office или свободно распространяемые аналоги.

**Информационные справочные системы:** Электронные ресурсы образовательной среды Университета

## 11.Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

#### Лекционные занятия:

- аудитория, оснащенная презентационной техникой (проектор, экран); доской для письма мелом или фломастерами;

- комплект электронных презентаций/слайдов.

#### Практические занятия:

- аудитория, оснащенная мультимедийными средствами (проектор, ноутбук), демонстрационными материалами (наглядными пособиями); доской для письма мелом или фломастерами;
  - рабочее место преподавателя, оснащенное компьютером с доступом в Интернет;
  - рабочее место студента, оснащенное компьютером с доступом в Интернет.

#### ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ

#### КАФЕДРА МАТЕМАТИКИ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН

# ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

## «АЛГЕБРА ЛОГИКИ И ДИСКРЕТНЫЙ АНАЛИЗ» (Приложение 1 к рабочей программе)

Направление подготовки: 09.03.04 Программная инженерия

Профиль: Проектирование и разработка программного обеспечения

Уровень высшего образования: бакалавриат

Форма обучения: очная

Королёв

2023

## 1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

| №   | Индекс           | Содержание                                                                                                                                                                 | Раздел                                                                     |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                     | ины, обеспечивающе-                                                                                                                                                                                                                                                       |
|-----|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| п/п | компе-<br>тенции | компетенции<br>(или ее части)*                                                                                                                                             | дисципли- ны, обеспе- чивающий формиро- вание ком- петенции (или ее части) | го формирование Трудовые дей- ствия                                                                                                                                                                                                                                                                  | компетенции, обучак<br>Необходимые<br>умения                                                                                                                                        | ощийся приобретает: Необходимые зна- ния                                                                                                                                                                                                                                  |
| 1   | УК-1             | Способен осуществлять поиск, критический анализ информации, применять системный подход для решения поставленных задач                                                      | Темы 1-5                                                                   | Осуществляет поиск информации для решения поставленной задачи по различным типам запросов; При обработке информации отличает факты от мнений, интерпретаций, оценок, формирует собственные мнения и суждения, аргументирует свои выводы, в том числе с применением философского понятийного аппарата | Определяет и ранжирует информацию, требуемую для решения поставленной задачи;                                                                                                       | Анализирует задачу, выделяя ее базовые составляющие; Анализирует пути решения проблем мировоззренческого, нравственного и личностного характера на основе использования основных философских идей и категорий в их историческом развитии и социально-культурном контексте |
| 2   | УК-2             | Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений | Темы 1-5                                                                   | Оценивает решение поставленных задач в зоне своей ответственности в соответствии с запланированными результатами контроля, при необходимости корректирует способы решения задач                                                                                                                      | Определяет связи между поставленными задачами и ожидаемые результаты их решения; В рамках поставленных задач определяет имеющиеся ресурсы и ограничения, действующие правовые нормы | Формулирует проблему, решение которой напрямую связано с достижением цели проекта; Анализирует планграфик реализации проекта в целом и выбирает способ решения поставленных задач                                                                                         |

| 3 | ОПК-1 | Способен при-    | Темы 1-5 | Применяет ме-   | Использует есте-  | Знает основы мате- |
|---|-------|------------------|----------|-----------------|-------------------|--------------------|
|   |       | менять есте-     |          | тоды математи-  | ственнонаучные и  | матики, вычисли-   |
|   |       | ственнонаучные   |          | ки, физики, вы- | общеинженерные    | тельной техники и  |
|   |       | и общеинженер-   |          | числительной    | знания, методы    | программирования   |
|   |       | ные знания, ме-  |          | техники и про-  | математического   |                    |
|   |       | тоды математи-   |          | граммирования   | анализа и модели- |                    |
|   |       | ческого анализа  |          | при выполнении  | рования для реше- |                    |
|   |       | и моделирова-    |          | конкретных за-  | ния стандартных   |                    |
|   |       | ния, теоретиче-  |          | дач, проектов;  | профессиональ-    |                    |
|   |       | ского и экспери- |          |                 | ных задач;        |                    |
|   |       | ментального      |          |                 | Выбирает методы   |                    |
|   |       | исследования в   |          |                 | математики, физи- |                    |
|   |       | профессиональ-   |          |                 | ки, вычислитель-  |                    |
|   |       | ной деятельно-   |          |                 | ной техники и     |                    |
|   |       | СТИ              |          |                 | программирова-    |                    |
|   |       |                  |          |                 | ния при выполне-  |                    |
|   |       |                  |          |                 | нии конкретных    |                    |
|   |       |                  |          |                 | задач, проектов,  |                    |
|   |       |                  |          |                 | теоретического и  |                    |
|   |       |                  |          |                 | эксперименталь-   |                    |
|   |       |                  |          |                 | ного исследования |                    |
|   |       |                  |          |                 | объектов профес-  |                    |
|   |       |                  |          |                 | сиональной дея-   |                    |
|   |       |                  |          |                 | тельности;        |                    |

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

| Код компетенции       | Инструменты, оце-<br>нивающие сформи-<br>рованность компе-<br>тенции | Показатель оценивания компетенции                                                                                                                                                                                                                                                     | Критерии оценки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| УК-1<br>УК-2<br>ОПК-1 | Письменное задание                                                   | А) полностью сформирована (компетенция освоена на высоком уровне) — 5 баллов Б) частично сформирована:  • компетенция освоена на продвинутом уровне — 4 балла; • компетенция освоена на базовом уровне — 3 балла; В) не сформирована (компетенция не сформирована) — 2 и менее баллов | Проводится в письменной форме  1.Выбор оптимального метода решения задачи (1 балл)  2. Умение применить выбранный метод (1 балл)  3. Логический ход решения правильный, но имеются арифметически в расчетах (1 балл)  4. Решение задачи и получение правильного результата (2 балла)  5. Задача не решена вообще (0 баллов)  Максимальная оценка - 5 баллов.  Время отведенное на процедуру – до 40 мин.  Результаты оценочной процедуры представляются обучающимся в срок не позднее 1 недели после проведения процедуры – для текущего контроля. Оценка проставляется в электронный журнал |
| УК-1<br>УК-2<br>ОПК-1 | Контрольная работа                                                   | А) полностью сформирована (компетенция освоена на высоком уровне) — 5 баллов Б) частично сформирована:  • компетенция                                                                                                                                                                 | Проводится в форме письменной работы Время, отведенное на процедуру – 60 мин. Неявка – 0. Критерии оценки: 1.Соответствие ответа заявленной                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| освоена на <u>продвинутом</u> уровне – 4 балла;                                                                 | тематике (0-5 баллов).<br>Максимальная сумма баллов - 5 бал-                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • компетенция                                                                                                   | лов.                                                                                                                                                                                |
| освоена на <u>базовом</u> уровне – 3 балла; В) не сформирована (компетенция не сформирована) – 2 и менее баллов | Результаты оценочной процедуры представляются обучающимся в срок не позднее 1 недели после проведения процедуры — для текущего контроля. Оценка проставляется в электронный журнал. |

# 3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

#### 3.1. Примерная тематика письменных заданий

#### Тема 1. Основные понятия теории множеств

1. Пусть  $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ , множества A, B, C, D заданы в таблице. Перечислить все элементы множества D.

| Вариант | Множества                                                                      |
|---------|--------------------------------------------------------------------------------|
|         | $A = \{1, 4, 5, 7, 8\}, B = \{2, 3, 4\}, C = \{1, 9\},$                        |
| 1       | $D = ((A \cup C) \setminus (\overline{A} \cap B)) \times C$                    |
|         | A = {2, 5, 6}, B = {1, 3, 5, 6, 8}, C = {1, 4},                                |
| 2       | $D = C \times ((A \cap B) \setminus (C \cup \overline{B}))$                    |
|         | A = {1, 3, 4, 6, 7}, B = {1, 2, 4}, C = {1, 8, 10},                            |
| 3       | $D = ((\overline{A} \cap C) \setminus (B \cup A)) \times B$                    |
|         | A = {2, 3, 4, 5, 6, 9, 10}, B = {4, 5, 6, 7, 8, 9, 10}, C = {1, 2, 3},         |
| 4       | $D = \overline{A} \times ((\overline{B} \cup C) \setminus (A \cap C))$         |
|         | A = {2, 5, 6, 8, 9}, B = {3, 4, 5}, C = {2, 10},                               |
| 5       | $D = ((A \cup C) \setminus (\overline{A} \cap B)) \times C$                    |
|         | $A = \{3, 6, 7\}, B = \{2, 4, 6, 7, 9\}, C = \{2, 5\}.$                        |
| 6       | $D = C \times ((A \cap B) \setminus (C \cup \overline{B}))$                    |
| Вариант | Множества                                                                      |
|         | $A = \{2, 4, 5, 7, 8\}, B = \{2, 3, 5\}, C = \{1, 2, 9\},$                     |
| 7       | $D = ((A \cap C) \setminus (\overline{B \cup A})) \times B$                    |
|         | $A = \{1, 3, 4, 5, 6, 7, 10\}, B = \{1, 5, 6, 7, 8, 9, 10\}, C = \{2, 3, 4\},$ |
| 8       | $D = \overline{A} \times ((\overline{B} \cup C) \setminus (A \cap C))$         |
|         | A = {3, 6, 7, 9, 10}, B = {4, 5, 6}, C = {1, 3},                               |
| 9       | $D = ((A \cup C) \setminus (\overline{A} \cap B)) \times C$                    |
|         | $A = \{4, 7, 8\}, B = \{3, 5, 7, 8, 10\}, C = \{3, 6\},$                       |
| 10      | $D = C \times ((A \cap B) \setminus (C \cup \overline{B}))$                    |
|         | $A = \{3, 5, 6, 8, 9\}, B = \{3, 4, 6\}, C = \{2, 3, 10\},$                    |
| 11      | $D = ((A \cap C) \setminus (\overline{B \cup A})) \times B$                    |

|    | $A = \{1, 2, 4, 5, 6, 7, 8\}, B = \{1, 2, 6, 7, 8, 9, 10\}, C = \{3, 4, 5\},$  |
|----|--------------------------------------------------------------------------------|
| 12 | $D = \overline{A} \times ((\overline{B} \cup C) \setminus (A \cap C))$         |
|    | $A = \{1, 4, 7, 8, 10\}, B = \{5, 6, 7\}, C = \{2,4\},$                        |
| 13 | $D = ((A \cup C) \setminus (\overline{A} \cap B)) \times C$                    |
|    | $A = \{5, 8, 9\}, B = \{1, 4, 6, 8, 9\}, C = \{4,7\},$                         |
| 14 | $D = C \times ((A \cap B) \setminus (C \cup \overline{B}))$                    |
|    | $A = \{4, 6, 7, 9, 10\}, B = \{4, 5, 7\}, C = \{1, 3, 4\},$                    |
| 15 | $D = ((\overline{A} \cap C) \setminus (B \cup A)) \times B$                    |
|    | $A = \{2, 3, 5, 6, 7, 8, 9\}, B = \{1, 2, 3, 6, 8, 9, 10\}, C = \{4, 5, 6\},$  |
| 16 | $D = A \times ((B \cup C) \setminus (A \cap C))$                               |
|    | $A = \{1, 2, 5, 8, 9\}, B = \{6, 7, 8\}, C = \{3, 5\},$                        |
| 17 | $D = ((A \cup C) \setminus (\overline{A} \cap B)) \times C$                    |
|    | $A = \{6, 9, 10\}, B = \{2, 5, 7, 9, 10\}, C = \{5, 8\},$                      |
| 18 | $D = C \times ((A \cap B) \setminus (C \cup \overline{B}))$                    |
|    | $A = \{1, 5, 7, 8, 10\}, B = \{5, 6, 8\}, C = \{2, 4, 5\},$                    |
| 19 | $D = ((A \cap C) \setminus (B \cup A)) \times B$                               |
|    | $A = \{3, 4, 6, 7, 8, 9, 10\}, B = \{1, 2, 3, 4, 7, 9, 10\}, C = \{5, 6, 7\},$ |
| 20 | $D = A \times ((B \cup C) \setminus (A \cap C))$                               |
|    | $A = \{2, 3, 6, 9, 10\}, B = \{7, 8, 9\}, C = \{4, 6\},$                       |
| 21 | $D = ((A \cup C) \setminus (A \cap B)) \times C$                               |
|    | $A = \{1, 7, 10\}, B = \{1, 3, 6, 8, 10\}, C = \{6, 9\},$                      |
| 22 | $D = C \times ((A \cap B) \setminus (C \cup B))$                               |
|    | $A = \{1, 2, 6, 8, 9\}, B = \{6, 7, 9\}, C = \{3, 5, 6\},$                     |
| 23 | $D = ((A \cap C) \setminus (B \cup A)) \times B$                               |
|    | $A = \{1, 4, 5, 7, 8, 9, 10\}, B = \{1, 2, 3, 4, 5, 8, 10\}, C = \{6, 7, 8\},$ |
| 24 | $D = A \times ((B \cup C) \setminus (A \cap C))$                               |
| 25 | $A = \{1, 3, 4, 7, 10\}, B = \{8, 9, 10\}, C = \{5, 7\},$                      |
| 25 | $D = ((A \cup C) \setminus (A \cap B)) \times C$                               |

2. Преобразовать выражение, заданное в таблице.

| Вариант | Выражение                                         |
|---------|---------------------------------------------------|
| 1       | $(A \setminus B) \cup (A \cap B)$                 |
| 2       | $(\overline{A \cap B}) \setminus (A \setminus B)$ |
| 3       | $(\overline{A \cup B}) \setminus B$               |
| 4       | $(B \setminus A) \cup (A \cap B)$                 |
| 5       | $(\overline{A \cup B}) \setminus \overline{B}$    |
| 6       | $(\overline{A \cup B}) \setminus A$               |
| 7       | $(\overline{A \cup B}) \setminus \overline{A}$    |
| 8       | $A \setminus (A \cup B)$                          |
| 9       | $B\setminus (A\cup B)$                            |
| 10      | $\overline{A}\setminus (A\cup B)$                 |

| 11 | $\overline{B}\setminus (A\cup B)$                       |
|----|---------------------------------------------------------|
| 12 | $(A \setminus B) \setminus (A \cup B)$                  |
| 13 | $(A \setminus B) \setminus (A \cap B)$                  |
| 14 | $(A \setminus B) \setminus (\overline{A \cap B})$       |
| 15 | $(A \setminus B) \setminus (\overline{A \cup B})$       |
| 16 | $(A \setminus B) \cap (B \setminus A)$                  |
| 17 | $(A \setminus B) \cap (\overline{B \setminus A})$       |
| 18 | $(\overline{A \setminus B}) \cap (B \setminus A)$       |
| 19 | $(A \setminus B) \cup (B \setminus \overline{A})$       |
| 20 | $(A \setminus B) \cup (\overline{B} \setminus A)$       |
| 21 | $(\overline{A \cap B}) \cap (\overline{B \setminus A})$ |
| 22 | $(A \cap B) \cap (\overline{B \setminus A})$            |
| 23 | $(A \cup B) \cap (\overline{B \setminus A})$            |
| 24 | $(\overline{A \cap B}) \cup (\overline{B \setminus A})$ |
| 25 | $(\overline{A \cap B}) \cup (B \setminus A)$            |

### **Тема 2. Исчисление высказываний Вариант 1.**

- 1. Являются ли выражения формулами логики высказываний:
- a) X; 6)  $Y \wedge Z$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \lor Y} \to ((Z \lor \overline{X}) \leftrightarrow Y)$
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «2 простое число и 3 простое число».
- 4. Составить таблицу истинности для формулы:  $\overline{(X} \to Y) \lor \overline{X \land Y}$  .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \wedge Y} \leftrightarrow (\overline{X} \wedge \overline{Y})$ .

#### Вариант 2.

- 1. Являются ли выражения формулами логики высказываний:
- а) x; б)  $X \vee \pi$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \lor Y} \to ((Z \lor \overline{X}) \longleftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Ломоносов великий учёный и талантливый поэт».
- 4. Составить таблицу истинности для формулы:  $\overline{X \vee Y} \to (X \leftrightarrow \overline{Z})$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \wedge Y} \leftrightarrow (\overline{X} \vee \overline{Y})$ .

#### Вариант 3.

- 1. Являются ли выражения формулами логики высказываний:
- a)  $X_5$ ; 6)  $Y \wedge Y$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \lor Y} \to ((Z \lor \overline{X}) \longleftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Число n делится на 2 или на 3».
- 4. Составить таблицу истинности для формулы:  $\overline{X \vee Y} \to (X \leftrightarrow \overline{Z})$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \lor Y} \leftrightarrow (\overline{X} \lor \overline{Y})$ .

#### Вариант 4.

- 1. Являются ли выражения формулами логики высказываний:
- a) F; 6)  $\overline{X}$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \vee Y} \to ((Z \vee \overline{X}) \leftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Высказывание А истинно или ложно».
- 4. Составить таблицу истинности для формулы:  $(X \land Y) \to (X \lor Y)$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \lor Y} \leftrightarrow (\overline{X} \land \overline{Y})$ .

#### Вариант 5.

- 1. Являются ли выражения формулами логики высказываний:
- a)  $X_i$ ; 6)  $\overline{X \wedge Y}$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \vee Y} \to ((Z \vee \overline{X}) \leftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Скрещивающиеся прямые не лежат в одной плоскости».
- 4. Составить таблицу истинности для формулы:  $((X \to Y) \land (Y \to Z)) \to (X \to Z).$
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(X \to Y) \leftrightarrow (Y \to X)$ .

#### Вариант 6.

- 1. Являются ли выражения формулами логики высказываний:
- a)  $F_1$ ; 6)  $\overline{X} \wedge \overline{Y}$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \lor Y} \to ((Z \lor \overline{X}) \longleftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Неверно, что две стороны трапеции равны и параллельны».
- 4. Составить таблицу истинности для формулы:  $\overline{(X} \to Y) \lor \overline{X \land Y}$  .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(X \to Y) \leftrightarrow (\overline{X} \to \overline{Y})$ .

#### Вариант 7.

1. Являются ли выражения формулами логики высказываний:

- a) u; 6)  $\overline{X \vee Y}$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \vee Y} \to ((Z \vee \overline{X}) \leftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Неверно, что 100 делится на 3 и на 7».
- 4. Составить таблицу истинности для формулы:  $\overline{X \vee Y} \to (X \leftrightarrow \overline{Z})$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \wedge Y} \leftrightarrow (\overline{X} \wedge \overline{Y})$ .

#### Вариант 8.

- 1. Являются ли выражения формулами логики высказываний:
- a) a;  $\delta$ )  $X \rightarrow Y$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \vee Y} \to ((Z \vee \overline{X}) \leftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «100 не делится ни на 3, ни на 7».
- 4. Составить таблицу истинности для формулы:  $\overline{X \vee Y} \to (X \leftrightarrow \overline{Z})$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \wedge Y} \leftrightarrow (\overline{X} \vee \overline{Y})$ .

#### Вариант 9.

- 1. Являются ли выражения формулами логики высказываний:
- a)  $\pi$ ; 6)  $(X \wedge Y) \vee Z$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \lor Y} \to ((Z \lor \overline{X}) \longleftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Если число чётно и больше 2-х, то оно равно сумме простых чисел».
- 4. Составить таблицу истинности для формулы:  $(X \land Y) \to (X \lor Y)$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \lor Y} \leftrightarrow (\overline{X} \lor \overline{Y})$ .

#### Вариант 10.

- 1. Являются ли выражения формулами логики высказываний:
- a) Y; 6)  $X \wedge (Y \vee Z)$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \vee Y} \to ((Z \vee \overline{X}) \leftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Я сделаю зарядку и, если будет хорошая погода, поеду за город».
- 4. Составить таблицу истинности для формулы:  $((X \to Y) \land (Y \to Z)) \to (X \to Z)$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \lor Y} \leftrightarrow (\overline{X} \land \overline{Y})$ .

#### Вариант 11.

1. Являются ли выражения формулами логики высказываний:

- a)  $Y_1$ ; 6)  $X \wedge Y \vee Z$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \lor Y} \to ((Z \lor \overline{X}) \leftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «четырёхугольник является квадратом тогда и только тогда, когда все его стороны и углы равны».
- 4. Составить таблицу истинности для формулы:  $\overline{(X} \to Y) \lor \overline{X \land Y}$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(X \to Y) \leftrightarrow (Y \to X)$ .

#### Вариант 12.

- 1. Являются ли выражения формулами логики высказываний:
- a) H; 6)  $X \rightarrow (Y \land Z)$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \lor Y} \to ((Z \lor \overline{X}) \longleftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Две плоскости параллельны тогда и только тогда, когда они не имеют общих точек или совпадают».
- 4. Составить таблицу истинности для формулы:  $\overline{X \lor Y} \to (X \leftrightarrow \overline{Z})$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(X \to Y) \leftrightarrow (\overline{X} \to \overline{Y})$ .

#### Вариант 13.

- 1. Являются ли выражения формулами логики высказываний:
- a) XY; 6)  $(X \wedge Y) \leftrightarrow (Z \vee X_1)$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \lor Y} \to ((Z \lor \overline{X}) \longleftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Если  $x^2 5x + 6 = 0$ , то x = 2, x = 3».
- 4. Составить таблицу истинности для формулы:  $\overline{X \vee Y} \to (X \leftrightarrow \overline{Z})$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \wedge Y} \leftrightarrow (\overline{X} \wedge \overline{Y})$ .

#### Вариант 14.

- 1. Являются ли выражения формулами логики высказываний:
- a) XZ; 6)  $(X \wedge Y) \leftrightarrow Z$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \lor Y} \to ((Z \lor \overline{X}) \longleftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Если |x| < 2, откуда x > -2 u x < 2».
- 4. Составить таблицу истинности для формулы:  $(X \land Y) \to (X \lor Y)$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \wedge Y} \leftrightarrow (\overline{X} \vee \overline{Y})$ .

#### Вариант 15.

- 1. Являются ли выражения формулами логики высказываний:
- a)  $X \lor u$ ; 6)  $Y \land (Z \rightarrow X_1)$ ?

- 2. Выписать все формулы, входящие в формулу:  $\overline{X \vee Y} \to ((Z \vee \overline{X}) \leftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Если |x| > 2, откуда x < -2 u x > 2».
- 4. Составить таблицу истинности для формулы:  $((X \to Y) \land (Y \to Z)) \to (X \to Z)$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \lor Y} \leftrightarrow (\overline{X} \lor \overline{Y})$ .

#### Вариант 16.

- 1. Являются ли выражения формулами логики высказываний:
- a)  $X \wedge \pi$ ; 6)  $Y_1 \leftrightarrow Z$ ?
- 2. Выписать все формулы, входящие в формулу:  $\overline{X \vee Y} \to ((Z \vee \overline{X}) \leftrightarrow Y)$ .
- 3. Формализуйте предложение (под предложением понимается высказывание или высказывательная форма): «Если  $x^2 2x + 1 = 0$ , то x = 2, x = 1».
- 4. Составить таблицу истинности для формулы:  $\overline{(X} \to Y) \lor \overline{X \land Y}$ .
- 5. Установить с помощью таблиц истинности, является ли формула тавтологией:  $(\overline{X \lor Y} \leftrightarrow (\overline{X} \land \overline{Y})$ .

## **Тема 3. Исчисление предикатов Вариант 1.**

- 1. Пусть  $M_1$  множество букв в слове «осколок»,  $M_2$  множество букв в слове «колос». Определить значение истинности следующего высказывания:  $M_1 = M_2$ .(2)
- 2. Найти множества истинности следующих предикатов: x кратно 3;  $\mathbf{M}_x = \{1; 2; 3; 4; 5; 6; 7; 8; 9\}.(2)$
- 3. Определить, равносильны ли на множестве М следующие высказывательные формы:  $\overline{x=2}; x \neq 2; M=R$ .(2)
- 4. Высказывательную форму заменить равносильной дизъюнкцией: |x+3| > 3.(2)

#### Вариант 2.

- 1. Пусть  $M_1$  множество букв в слове «осколок»,  $M_2$  множество букв в слове «колос». Определить значение истинности следующего высказывания: (o;c;к;o;л;o;к) = (к;o;л;o;c). (2)
- 2. Найти множества истинности следующих предикатов: x кратно 3;  $M_x = \{3; 6; 9; 12\}.(2)$
- 3. Определить, равносильны ли на множестве М следующие высказывательные формы:  $\overline{x \ge 2}; x \le 2; M = R.(2)$
- 4. Высказывательную форму заменить равносильной дизъюнкцией:  $\frac{x-5}{x-1} > 0.(2)$

#### Вариант 3.

- 1. Из элементов множества {2;3;5} составить множество всевозможных различных произведений двух однозначных сомножителей. (2)
- 2. Найти множества истинности следующих предикатов: x кратно 3;  $M_x = \{2;5;7\}.(2)$
- 3. Определить, равносильны ли на множестве М следующие высказывательные формы:  $\overline{x>2}; x<2; M=R.(2)$
- 4. Высказывательную форму заменить равносильной дизьюнкцией:  $x^2 5x + 6 = 0$  (2)

#### Вариант 4.

- 1. Из элементов множества  $\{2;3;5\}$  составить множество всевозможных двузначных чисел. (2)
- 2. Найти множества истинности следующих предикатов:  $y^2 + 3y + 2 = 0$ ;  $M_v = R$ . (2)
- 3. Определить, равносильны ли на множестве М следующие высказывательные формы:  $\overline{x>2}; x \le 2; M=R.(2)$
- 4. Высказывательную форму заменить равносильной дизьюнкцией:  $x^2 + y^2 \neq 0.(2)$

#### Вариант 5.

- 1. Из элементов множества  $\{2;3;5\}$  составить множество всевозможных упорядоченных пар. (2)
- 2. Найти множества истинности следующих предикатов:  $y^2 + 1 \ge 0$ ;  $M_y = R$ . (2)
- 3. Определить, равносильны ли на множестве М следующие высказывательные формы: y-npocmoe uucno, y-cocmaehoe uucno, M=N.(2)
- 4. Высказывательную форму заменить равносильной дизъюнкцией:  $x^2 5x + 6 > 0$  (2)

#### Вариант 6.

- 1. Из элементов множества {2;3;5} составить множество всевозможных упорядоченных троек. (2)
- 2. Найти множества истинности следующих предикатов: Siny > 2;  $M_v = R$ . (2)
- 4. Высказывательную форму заменить равносильной дизьюнкцией:  $x^3 x \ge 0.(2)$

#### Вариант 7.

- 1. Пусть  $A = \{m; n; p\}$ . Найти  $A^2$ . (2)
- 2. Найти множества истинности следующих предикатов:  $x^2 + y^2 = 0$ ;  $M_x = M_y = R$ . (2)
- 3. Определить, равносильны ли на множестве M следующие высказывательные формы:  $|x| < 1; x^2 1 \ge 0; M = R$  .(2)
- 4. Высказывательную форму заменить равносильной дизъюнкцией:  $x \cdot Sinx < 0.(2)$

#### Вариант 8.

- 1. Пусть  $A = \{m; n; p\}$ . Найти  $A^3$ . (2)
- 2. Найти множества истинности следующих предикатов: x < y;  $M_x = \{1;2;3;4\}; M_y = \{3;4;5\}.(2)$
- 3. Определить, равносильны ли на множестве М следующие высказывательные формы: |x| < 0; Sin2x = 2SinxCosx; M = R.(2)
- 4. Найти множество истинности следующего предиката: («x чётное число»  $\rightarrow$  «x –квадрат натурального число») ( $M_x$  = {1;2;3; ...;30}).(2)

#### Вариант 9.

- 1. Переменные высказывательной формы x > y принимают значения из множества  $\{1;2;3\}$ ,  $Q_1$  и  $Q_2$  предикаты, задаваемые этой формой соответственно при алфавитном и обратном ему порядкам переменных. Найти область определения предикатов  $Q_1$  и  $Q_2$ . (2)
- 2. Найти множества истинности следующих предикатов:  $y_1$ делит  $y_2$ ;  $M_1 = M_2 = \{2;3;4;6\}.(2)$
- 3. Определить, равносильны ли на множестве М следующие высказывательные формы:  $x^2 + y^2 \ge 0$ ; Sinx = 2; M = R.(2)
- 4. Найти множество истинности следующего предиката: («x квадрат натурального числа»  $\rightarrow$  «x —чётное число») ( $M_x = \{1; 2; 3; ...; 30\}$ ).(2)

#### Вариант 10.

- 1. Переменные высказывательной формы x > y принимают значения из множества  $\{1;2;3\}$ ,  $Q_1$  и  $Q_2$  предикаты, задаваемые этой формой соответственно при алфавитном и обратном ему порядкам переменных. Найти  $Q_1$  ((2,3)). (2)
- 2. Установить, равны ли предикаты, заданные высказывательными формами:  $x^2 = 1$  и x = 1;  $M_x = N$  (множество натуральных чисел). (2)
- 3. Определить, равносильны ли на множестве М следующие высказывательные формы:  $\overline{x \in \{2;3;4;5\}}; x \in \{1;6;7\}; M = \{1;2;3;4;5;6;7\}.(2)$
- 4. Высказывательную форму заменить равносильной дизъюнкцией: |x-1| > 2.(2)

#### Вариант 11.

- 1. Переменные высказывательной формы x > y принимают значения из множества  $\{1;2;3\}$ ,  $Q_1$  и  $Q_2$  предикаты, задаваемые этой формой соответственно при алфавитном и обратном ему порядкам переменных. Найти  $Q_2((2,3))$ . (2)
- 2. Установить, равны ли предикаты, заданные высказывательными формами:  $x^2 = x$  и x = 1;  $M_x = N$  (множество натуральных чисел). (2)
- 3. Определить, равносильны ли на множестве М следующие высказывательные формы:  $x \in \{0;2;3;4;5\}; x \in \{1;6;7\}; M = \{0;1;2;3;4;5;6;7\}.(2)$

#### 3.2. Примерная тематика заданий контрольной работы Тема 4. Элементы теории алгоритмов.

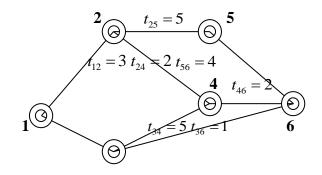
**Вариант 1.** Начертить схему, соответствующую формуле:  $(X \lor Y)Z \lor \overline{X}Y$ .

**Вариант 2.** Начертить схему, соответствующую формуле:  $(X \to Y) \lor X$ .

**Вариант 3.** Начертить схему, соответствующую формуле:  $(X \leftrightarrow Y)Z$ .

**Вариант 4.** Составить схему цепи с тремя независимыми контактами, которая замкнута тогда и только тогда, когда разомкнут только 1 контакт.

**Вариант 5.** Машина-экзаменатор даёт сигнал «зачёт» (зажигается лампочка) в том и только в том случае, если экзаменующийся ответил правильно хотя бы на два из трёх вопросов билета. При вводе в машину правильного ответа замыкается контакт в цепи сигнальной лампочки. Построить схему этой цепи.


**Вариант 6.** Комитет, состоящий из трёх человек, включая председателя, выносит решение большинством голосов, однако решение не может быть принято, если за него не проголосовал председатель. Голосование «за» производится поворотом ручки, замыкающей контакт, и в случае принятия решения зажигается лампочка. Построить простейшую схему такой цепи.

**Вариант 7.**Построить схему, позволяющую включать и выключать в комнате верхний свет любым из трёх выключателей, один из которых находится при входе в комнату, другой — над письменным столом, третий — над диваном.

#### Тема 5. Некоторые алгоритмы дискретной оптимизации

Найти кратчайший путь в сети с помощью алгоритма Дейкстры. Свести задачу к задаче распределительного типа и решить ее, применив алгоритм венгерского метода.

#### Вариант 1-10.



3

Таблина вариантов:

| l <sub>ij</sub> | l <sub>12</sub> | l <sub>13</sub> | l <sub>ij</sub> | l <sub>24</sub> | 125 | l <sub>34</sub> | 136 | <b>l</b> 45 | l <sub>56</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----|-----------------|-----|-------------|-----------------|
|                 |                 |                 |                 |                 |     |                 |     |             |                 |
| Вариант 2.      | 5               | 2               | 5               | 6               | 11  | 3               | 5   | 8           | 4               |
| Вариант 3.      | 6               | 3               | 6               | 7               | 6   | 10              | 8   | 6           | 3               |
| Вариант 4.      | 7               | 5               | 9               | 2               | 6   | 8               | 2   | 2           | 6               |
| Вариант 5.      | 5               | 6               | 2               | 6               | 6   | 7               | 9   | 6           | 4               |
| Вариант 6.      | 6               | 4               | 3               | 7               | 5   | 9               | 2   | 4           | 5               |
| Вариант 7.      | 10              | 1               | 7               | 5               | 4   | 6               | 4   | 7           | 3               |
| Вариант 8.      | 9               | 6               | 2               | 9               | 6   | 8               | 8   | 5           | 6               |
| Вариант 9.      | 8               | 3               | 6               | 5               | 8   | 11              | 4   | 4           | 7               |
| Вариант 10.     | 6               | 4               | 9               | 7               | 3   | 3               | 5   | 6           | 4               |

# 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Формой контроля знаний по дисциплине «Дифференциальные уравнения» являются две текущие аттестации в форме тестов и итоговая аттестация в форме экзамена.

| Неделя<br>теку-<br>щего<br>кон-<br>троля | Вид оценоч-<br>ного средства | Код компе-<br>тенций,<br>оцениваю-<br>щий знания,<br>умения,<br>навыки | Содер-<br>жание<br>оценоч-<br>ного<br>средства | Требования к<br>выполнению                                           | Срок сдачи<br>(неделя се-<br>местра)                                | Критерии оценки по содержанию и качеству с указанием баллов                                                                                                                        |
|------------------------------------------|------------------------------|------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-8                                      | тестирование                 | УК-1<br>УК-2<br>ОПК-1                                                  | 33 вопроса                                     | Компьютерное тестирование; время, отведенное на процедуру - 40 минут | Результаты тестирования предоставляются в день проведения процедуры | Критерии оценки определяются процентным соотношением. Не явка - 0 Удовлетворительно - от 51% правильных ответов. Хорошо - от 70%. Отлично – от 90%. Максимальная оценка – 5 баллов |

| 15-16                | тестирование | УК-1<br>УК-2<br>ОПК-1 | 33 вопроса | Компьютерное тестирование; время, отведенное на процедуру – 40 минут                                       | Результаты тестирования предоставляются в день проведения процедуры | Критерии оценки определяются процентным соотношением. Не явка - 0 Удовлетворительно - от 51% правильных ответов. Хорошо - от 70%. Отлично – от 90%. Максимальная оценка – 5 баллов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|--------------|-----------------------|------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В соответствии с КУГ | Экзамен      | УК-1<br>УК-2<br>ОПК-1 | З вопроса  | Экзамен проводится в письменной форме, путем ответа на вопросы. Время, отведенное на процедуру — 40 минут. | Результаты предоставля-<br>ются в день проведения<br>экзамена       | Критерии оценки: «Отлично»: знание основных понятий предмета; умение использовать и применять полученные знания на практике; работа на практических занятиях; знание основных научных теорий, изучаемых предметов; ответ на вопросы билета. «Хорошо»: •знание основных понятий предмета; •умение использовать и применять полученные знания на практике; •работа на практических занятиях; •знание основных научных теорий, изучаемых предметов;  •ответы на вопросы билета  •иеправильно решено практическое задание «У довлетворительно»: демонстрирует частичные знания по темам дисциплин; незнание, неумение использовать и применять полученные знания по темам дисциплин; незнание, неумение использовать и применять полученные знания на практических занятиях; «Неудовлетворительно»: демонстрирует частичные знания по |

|                                                                         |                                                                                                                                                                   |            |          |             |             | темам дисциплин;                          |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-------------|-------------|-------------------------------------------|--|
|                                                                         |                                                                                                                                                                   |            |          |             |             | незнание основных                         |  |
|                                                                         |                                                                                                                                                                   |            |          |             |             | понятий предмета; неумение использо-      |  |
|                                                                         |                                                                                                                                                                   |            |          |             |             | вать и применять                          |  |
|                                                                         |                                                                                                                                                                   |            |          |             |             | полученные знания                         |  |
|                                                                         |                                                                                                                                                                   |            |          |             |             | на практике;                              |  |
|                                                                         |                                                                                                                                                                   |            |          |             |             | не работал на прак-<br>тических занятиях; |  |
|                                                                         |                                                                                                                                                                   |            |          |             |             | • не отвечает на                          |  |
|                                                                         |                                                                                                                                                                   |            |          |             |             | вопросы.                                  |  |
|                                                                         | <b>4.1. Вопросы, выносимые на тестирование</b> По форме заданий выбраны закрытые тесты (с выборочным ответом). Каждому вопросу соответствует один вариант ответа. |            |          |             |             |                                           |  |
|                                                                         | <u>здел 1.</u> Элег                                                                                                                                               |            |          |             |             |                                           |  |
| <u>= v.</u>                                                             |                                                                                                                                                                   |            |          | ВИЛЬНЫЇ     | й ответ     |                                           |  |
| 1 Enad                                                                  |                                                                                                                                                                   |            |          |             | ю диаграмм  | •                                         |  |
|                                                                         |                                                                                                                                                                   |            | кио зада | ть с помощь | ло диаграмм | •                                         |  |
|                                                                         | екарта-Гами.                                                                                                                                                      |            |          |             |             |                                           |  |
|                                                                         | ля-Кантора                                                                                                                                                        |            |          |             |             |                                           |  |
|                                                                         | органа-Хасс                                                                                                                                                       |            |          |             |             |                                           |  |
|                                                                         | ілера-Венн                                                                                                                                                        |            |          |             |             |                                           |  |
|                                                                         | еффера-Пир                                                                                                                                                        |            |          |             |             |                                           |  |
|                                                                         | соб задания                                                                                                                                                       | множеств,  | при котс | ром строято | я диаграмм  | ы Эйлера-                                 |  |
| Венна:                                                                  |                                                                                                                                                                   |            |          |             |             |                                           |  |
| □ пе                                                                    | речисление                                                                                                                                                        | всех элеме | НТОВ     |             |             |                                           |  |
| □ из                                                                    | □ изображение элементов на плоскости +                                                                                                                            |            |          |             |             |                                           |  |
| □ аналитический                                                         |                                                                                                                                                                   |            |          |             |             |                                           |  |
| 3. Способ задания множеств, при котором указываются общие свойства всех |                                                                                                                                                                   |            |          |             |             |                                           |  |
| элементов:                                                              |                                                                                                                                                                   |            |          |             |             |                                           |  |
| □ перечисление всех элементов                                           |                                                                                                                                                                   |            |          |             |             |                                           |  |
| <ul><li>□ изображение элементов на плоскости</li></ul>                  |                                                                                                                                                                   |            |          |             |             |                                           |  |
| □ аналитический +                                                       |                                                                                                                                                                   |            |          |             |             |                                           |  |
|                                                                         | ация объеді                                                                                                                                                       |            | Wectp.   |             |             |                                           |  |
| ¬. Onep                                                                 | ация ооведі                                                                                                                                                       | инсния мне | JACCIB.  |             |             |                                           |  |
|                                                                         | •                                                                                                                                                                 |            |          |             |             |                                           |  |
|                                                                         | □ +<br>_                                                                                                                                                          |            |          |             |             |                                           |  |
|                                                                         | $\Box A \cap B$                                                                                                                                                   |            |          |             |             |                                           |  |
| $\square$ A/B                                                           |                                                                                                                                                                   |            |          |             |             |                                           |  |
| $\Box$ $\overline{A}$                                                   |                                                                                                                                                                   |            |          |             |             |                                           |  |
| 5. Операция пересечения множеств:                                       |                                                                                                                                                                   |            |          |             |             |                                           |  |
| $\Box A \cup B$                                                         |                                                                                                                                                                   |            |          |             |             |                                           |  |
| $\Box A \cap B$ +                                                       |                                                                                                                                                                   |            |          |             |             |                                           |  |
| $\Box$ $A/B$                                                            | $\square$ $A/B$                                                                                                                                                   |            |          |             |             |                                           |  |
| $\Box \overline{A}$                                                     |                                                                                                                                                                   |            |          |             |             |                                           |  |
| 6. Операция дополнения множеств:                                        |                                                                                                                                                                   |            |          |             |             |                                           |  |
| -                                                                       | $\Box A \cup B$                                                                                                                                                   |            |          |             |             |                                           |  |
| _                                                                       | $\Box A \circ B$                                                                                                                                                  |            |          |             |             |                                           |  |
| _                                                                       | $\square A \cap B$ $\square A/B +$                                                                                                                                |            |          |             |             |                                           |  |
| A/L                                                                     | $\square$ A/B $\square$                                                                                                                                           |            |          |             |             |                                           |  |

| $\sqcup$ A                                                                                 |                                                                                                     |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 7. Операция отрицания множества:                                                           |                                                                                                     |
| $\Box A \cup B$                                                                            |                                                                                                     |
| $\Box \overline{AB}$                                                                       |                                                                                                     |
| $\Box$ $A/B$                                                                               |                                                                                                     |
| $\Box \bar{A} +$                                                                           |                                                                                                     |
|                                                                                            | ІРАВИЛЬНЫЕ ОТВЕТЫ                                                                                   |
| 1. Способы задания множеств:                                                               |                                                                                                     |
| □ перечислением всех элементог                                                             | R +                                                                                                 |
| □ перечислением основных элеме                                                             |                                                                                                     |
| □ указанием общих свойств всех                                                             |                                                                                                     |
| <ul> <li>□ указанием общих своисть всех</li> <li>□ изображением элементов на п.</li> </ul> |                                                                                                     |
| _                                                                                          |                                                                                                     |
| □ указанием свойств главных элем                                                           | ментов                                                                                              |
| ш ло                                                                                       | ПОЛНИТЕ                                                                                             |
| , ,                                                                                        |                                                                                                     |
|                                                                                            | вокупность каких-либо объектов произ-                                                               |
| вольной природы, обладающих неко                                                           | торым оощим признаком.                                                                              |
| MHOЖЕСТВОМ +                                                                               |                                                                                                     |
|                                                                                            | еств называется множество, содержащее                                                               |
| все элементы, входящие в состав хот                                                        | я оы одного из исходных множеств.                                                                   |
| ОБЪЕДИНЕНИЕМ +                                                                             |                                                                                                     |
|                                                                                            | еств называется множество, содержащее                                                               |
|                                                                                            | х исходных множеств одновременно.                                                                   |
| ПЕРЕСЕЧЕНИЕМ +                                                                             |                                                                                                     |
|                                                                                            | ества $B$ называется множество, содержа-                                                            |
| щее все элементы множества $A$ , кото                                                      | рые не входят в множество $B$ .                                                                     |
| ДОПОЛНЕНИЕМ +                                                                              |                                                                                                     |
|                                                                                            | я множество всех тех элементов, которые                                                             |
| не содержатся в множестве $A$ .                                                            |                                                                                                     |
| ОТРИЦАНИЕМ +                                                                               |                                                                                                     |
| 6. Множество, не содержащее ни одн                                                         | ного элемента, называется                                                                           |
| ПУСТЫМ +                                                                                   |                                                                                                     |
| 7. Количество элементов конечного                                                          | множества называется мно-                                                                           |
| жества.                                                                                    |                                                                                                     |
| МОЩНОСТЬЮ +                                                                                |                                                                                                     |
| ,                                                                                          |                                                                                                     |
| IV. УСТАНОВИТ                                                                              | ГЕ СООТВЕТСТВИЕ                                                                                     |
| 1.                                                                                         |                                                                                                     |
| Свойства операций над множествами                                                          | Формула                                                                                             |
| 1) закон идемпотентности                                                                   | a) $A \cup A = A$                                                                                   |
| 2) коммутативность операции объединения 3) закон дистрибутивности                          | $\begin{array}{c} \text{6)} \ A \cup B = B \cup A \\ \text{B)} \ A \cap A = A \end{array}$          |
| 4) ассоциативность операции пересечения                                                    | $\begin{array}{c} B) \ A \cap A = A \\ \Gamma) \ A \cap (B \cap C) = (A \cap B) \cap C \end{array}$ |
| <u>i</u> ' <u>i</u>                                                                        | $\pi$ ) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$                                            |

ОТВЕТЫ: 1) а, в;2) б;3) д;4) г.

2.

| Множество               | Общепринятое обозначение |
|-------------------------|--------------------------|
| 1) натуральных чисел    | a) Ø                     |
| 2) действительных чисел | 6) N                     |
| 3) целых чисел          | в) <i>R</i>              |
| 4) пустое               | $\Gamma$ ) $Z$           |

#### ОТВЕТЫ: 1) б;2) в;3) г;4) а.

3.

| Аксиома теории множеств  | Текст аксиомы                                                              |
|--------------------------|----------------------------------------------------------------------------|
| 1) существования         | а) существует множество, не содержащее ни одного элемента                  |
| 2) объемности            | б) существует по крайней мере одно множество                               |
| 3) существования пустого | в) если множества $A$ и $B$ составлены из одних и тех же элементов, то они |
| множества                | равны                                                                      |

#### ОТВЕТЫ: 1) б;2) в;3) а.

4.

| Операция над множествами | Обозначение                |
|--------------------------|----------------------------|
| 1) объединение           | a) A/B                     |
| 2) пересечение           | $  6 \rangle \overline{A}$ |
| 3) дополнение            | $(B) A \cup B$             |
| 4) отрицание             | $\Gamma$ $A \cap B$        |

#### ОТВЕТЫ: 1) в;2) г;3) а;4) б.

5.

| Множества, заданные своими функ-   | Универсальное множество $U=\{0,1,2,3,4,5,6,7,8,9\}$ . Тогда множе- |
|------------------------------------|--------------------------------------------------------------------|
| циями принадлежности               | ства содержат следующие элементы                                   |
| 1) $\mu_A = (1,1,0,1,0,1,0,1,1,0)$ | a) $A = \{2,4,5,6,7,8\}$                                           |
| 2) $\mu_A = (1,0,1,1,0,1,1,0,0,1)$ | 6) <i>A</i> ={1,2,3,6,8,9}                                         |
| 3) $\mu_A = (0,0,1,0,1,1,1,1,0)$   | B) $A = \{0,1,3,5,7,8\}$                                           |
| 4) $\mu_A = (0,1,1,1,0,0,1,0,1,1)$ | r) $A = \{0, 2, 3, 5, 6, 9\}$                                      |

#### ОТВЕТЫ: 1) в;2) г;3) а;4) б.

6.

| Даны множества $A=\{2,3,4\}$ , $B=\{3,4,5,6\}$ , из которых | Тогда множества $C_1$ , $C_2$ , $C_3$ содержат следую- |
|-------------------------------------------------------------|--------------------------------------------------------|
| получены множества                                          | щие элементы                                           |
| 1) $C_1 = A \cup B$                                         | a) {2}                                                 |
| $2) C_2 = A \cap B$                                         | 6) {2,3,4,5,6}                                         |
| 3) $C_3 = A \setminus B$                                    | B) {3,4}                                               |

#### ОТВЕТЫ: 1) б;2) в;3) а.

#### **V. УСТАНОВИТЕ ПРАВИЛЬНЫЙ ПОРЯДОК СЛЕДОВАНИЯ**

- 1. Мощность множеств по возрастанию:
  - А. множество натуральных чисел
  - В. множество действительных чисел
  - C.  $A=\{1, 3, 6, 7\}$
  - D.  $B=\{1, 3, 6, 7, 9\}$
  - Е. множество десятичных цифр
  - F. множество двоичных цифр

#### **ОТВЕТЫ:** F, C, D, E, A, В.

- 2. Теорема Кантора-Бернштейна:
  - A.  $|A| \leq |B|$
  - B.  $|B| \leq |A|$
  - С. если
  - D. |A| = |B|
  - Е. то

| ОТВЕТЫ:     | C. | Α. | В. | Ε. | D. |
|-------------|----|----|----|----|----|
| O I DLI DII | ~, | ,  |    | ,, |    |

| <b>ОТВЕТЫ:</b> C, A, B, E, D.                                                       |
|-------------------------------------------------------------------------------------|
| 3. Теорема о Декартовом произведении множеств: Пусть $A_1, A_2,, A_n$ – ко-         |
| нечные множества, а $ A_1 $ , $ A_2 $ ,, $ A_n $ их мощности соответственно. Тогда: |
| А. множества                                                                        |
| В. равна                                                                            |
| С. мощность                                                                         |
| $\mathbf{D}_{\bullet}  A_1 \times A_2 \times \times A_n$                            |
| Е. мощностей                                                                        |
| F. $A_1, A_2,, A_n$                                                                 |
| G. произведению                                                                     |
| Н. множеств                                                                         |
| <b>ОТВЕТЫ:</b> C, A, D, B, G, E, H, F.                                              |
| 4. Теорема Кантора: Множество                                                       |
| А. всех рациональных чисел                                                          |
| В. несчетно                                                                         |
| С. множество                                                                        |
| D. всех действительных чисел                                                        |
| Е. счетно                                                                           |
| <b>ОТВЕТЫ:</b> A, E, C, D, B.                                                       |
| 5. Биномом называют:                                                                |
| А. суммой                                                                           |
| В. многочлен                                                                        |
| С. двух                                                                             |
| D. являющийся                                                                       |
| Е. слагаемых                                                                        |
| OTBETЫ: B, D, A, C, E.                                                              |
| Раздел 2. Алгебра логики.                                                           |
| І. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ                                                         |
| 1. Высказывание, истинное тогда и только тогда, когда истинны $a, b$ :              |
| $\Box a \lor b$                                                                     |
| $\Box a \wedge b$ +                                                                 |
| $\Box a \rightarrow b$                                                              |
| $\Box a \oplus b$                                                                   |
| 2. Высказывание, ложное, когда <i>а</i> истинно, а <i>b</i> ложно:                  |
| $\Box a \leftrightarrow b$                                                          |
| $\Box a \downarrow b$                                                               |
| $\Box a \lor b$                                                                     |
| $\Box a \rightarrow b + \Box$                                                       |
| 3. Высказывание, истинное, когда <i>а и в</i> одновременно ложно или истинно:       |
| $\Box a \wedge b$                                                                   |
| $\Box a \oplus b$                                                                   |
| $\sqcup a \leftrightarrow b$ +                                                      |
| $\Box a \downarrow b$                                                               |
| 4. Элементарное высказывание:                                                       |

| $\Box$ $ab$                                                                |
|----------------------------------------------------------------------------|
| $\Box$ $\bar{a}$                                                           |
| $\Box$ $b$ +                                                               |
| $\Box a \lor b$                                                            |
| 5. Высказывание, равносильное высказыванию ¬(a v b):                       |
| $\square$ $a \oplus b$                                                     |
| $\Box a \downarrow b$ +                                                    |
| $\Box a b$                                                                 |
| $\Box a \wedge b$                                                          |
| 6. Высказывание, равносильное высказыванию $\neg (a \land b)$ :            |
| $\Box a b$ +                                                               |
| $\Box a \downarrow b$                                                      |
| $\Box  a \leftrightarrow b$                                                |
| $\Box a \lor b$                                                            |
| 7. Высказывание равносильное высказыванию $\neg (a \leftrightarrow b)$ :   |
| $\Box a \downarrow b$                                                      |
| $\Box a \downarrow b$ $\Box a \mid b$                                      |
|                                                                            |
| $\Box \ a \oplus b + \Box$                                                 |
| Q Dryanga pagus ang manggang mutang Hiladahana.                            |
| 8. Высказывание, именующееся «штрих Шеффера»:                              |
| $\Box a \leftrightarrow b$                                                 |
| $\Box a \downarrow b$                                                      |
| $\Box a b$ +                                                               |
| $\Box$ $\neg(ab)$                                                          |
| 9. Высказывание, именующееся «сумма Жегалкина»:                            |
| $\Box a \lor b$                                                            |
| $\bigsqcup_{a\oplus b}$ +                                                  |
| $\sqcup ab$                                                                |
| $\Box  a \leftrightarrow b$                                                |
| 10. Высказывание, именующееся «стрелка Пирса»:                             |
| $\Box a \downarrow b + \Box$                                               |
| $\Box a \rightarrow b$                                                     |
| $\Box a \leftrightarrow b$                                                 |
| $\Box \neg (a \leftrightarrow b)$                                          |
| 11. Функции $f(x,y)=(0,0,0,1)$ , заданной столбцом значений, соответствует |
| формула:                                                                   |
| $\Box x \lor y$                                                            |
| $\square x \wedge y +$                                                     |
| $\square x \oplus y$                                                       |
|                                                                            |
| 12. Функции $f(x,y)=(0,1,1,1)$ , заданной столбцом значений, соответствует |
| формула:                                                                   |
| $\Box x \lor y$ +                                                          |
| $\square x \wedge y$                                                       |

| $\square x \oplus y$                                                       |
|----------------------------------------------------------------------------|
|                                                                            |
| 13. Функции $f(x,y)=(1,1,0,1)$ , заданной столбцом значений, соответствует |
| формула:                                                                   |
| $\square x \lor y$                                                         |
| $\Box x \wedge y$                                                          |
| $\square x \oplus y$                                                       |
| $\square x \rightarrow y$ +                                                |
| 14. Функции $f(x,y)=(0,1,1,0)$ , заданной столбцом значений, соответствует |
| формула:                                                                   |
| $\square x \lor y$                                                         |
| $\square x \wedge y$                                                       |
| $\square x \oplus y$ +                                                     |
|                                                                            |
| 15. Функции $f(x,y)=(1,0,0,0)$ , заданной столбцом значений, соответствует |
| формула:                                                                   |
|                                                                            |
| $\Box x \downarrow y$ +                                                    |
|                                                                            |
| $\square x \wedge y$                                                       |
| 16. Функции $f(x,y)=(1,0,0,1)$ , заданной столбцом значений, соответствует |
| формула:                                                                   |
| $\Box x \leftrightarrow y$ +                                               |
|                                                                            |
| $\Box x   y$                                                               |
| $\square x \wedge y$                                                       |
| 17. Функции $f(x,y)=(1,1,1,0)$ , заданной столбцом значений, соответствует |
| формула:                                                                   |
|                                                                            |
|                                                                            |
| $\square x y$ +                                                            |
|                                                                            |
| 18. Число булевых функций от п аргументов равно:                           |
| $\square 2^{\mathrm{n}}$                                                   |
| $\Box$ $\mathbf{n}^2$                                                      |
| $\square 2n^2$                                                             |
| $\square  2^{2^n}   +$                                                     |
|                                                                            |

#### 4.2. Типовые вопросы, выносимые на экзамен

#### Исчисление высказываний, исчисление предикатов

- 1. Логические высказывания (простые и сложные). Сентенциональные связки. Таблицы истинности
- 2. Общезначимые высказывания (тавтологии). Эквивалентные высказывания. Негатив. Теоремы о тавтологиях, эквивалентности, негативе

- 3. Логические следствия. Теоремы о логических следствиях. Доказательство логических следствий. Противоречие. Доказательство от противного. Непротиворечивость системы высказываний.
- 4. Основные понятия теории исчисления предикатов (термы, предикаты, кванторы). Связные и свободные переменные, область действия квантора
- 5. Процедура приписывания истинностных значений формуле (таблицы истинности)

#### Элементы теории множеств, общее понятие функции

- 6. Множество, пустое множество, подмножество. Основные операции: включение, пересечение, объединение, разность, дополнение. Диаграммы Эйлера-Венна.
- 7. Алгебра множеств. Мощность множеств
- 8. Прямое произведение множеств. Отношения, виды отношений Отношения эквивалентности. Классы эквивалентности.
- 9. Функции, заданные на двух произвольных множествах
- 10.Отображения множеств («на», « в», инъекция, биекция)

#### Элементы теории алгоритмов

- 11. Понятие алгоритма, предназначенного для решения задач обработки информации на ЭВМ. Этапы работы алгоритма.
- 12. Способы представления алгоритма. Блок-схема алгоритма.
- 13. Временные оценки алгоритма.
- 14. Анализ сложности алгоритма. Полиномиальный и экспоненциальный алгоритм. Недетерминированные алгоритмы.
- 15.Вычислимые функции. Вычислимый алгоритм вычисления числа  $\pi$ .
- 16. Математическое определение алгоритма. Простейшие функции.
- 17. Суперпозиция, примитивна рекурсия и минимизация.
- 18. Примитивно-рекурсивные и частично-рекурсивные функции. Примитивно-рекурсивные предикаты.
- 19. Алфавит, ассоциативное исчисление в алгоритме.
- 20. Нормальный алгоритм Маркова. Нормально вычисляемые функции.
- 21. Математическое определение машины Тьюринга.

#### Дискретная оптимизация

- 22. Задачи оптимизации. Дискретная оптимизация.
- 23.Сети. Алгоритм Дейкстры.
- 24. Задача о назначениях. Венгерский метод решения.
- 25.Постановка задачи о максимальном потоке в сети. Графический и табличный способы решения.

#### 26.Задача коммивояжера

Итоговое начисление баллов по дисциплине осуществляется в соответствии с разработанной и внедренной балльно-рейтинговой системой контроля и оценивания уровня знаний и внеучебной созидательной активности обучающихся.

#### ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ

#### КАФЕДРА МАТЕМАТИКИ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН

#### МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

## «АЛГЕБРА ЛОГИКИ И ДИСКРЕТНЫЙ АНАЛИЗ» (Приложение 2 к рабочей программе)

Направление подготовки: 09.03.04 Программная инженерия

Профиль: Проектирование и разработка программного обеспечения

Уровень высшего образования: бакалавриат

Форма обучения: очная

Королёв 2023

#### 1. Общие положения

#### Цель дисциплины:

- 1. Формирование систематизированных знаний в области математической логики, представлений о проблемах оснований математики и роли математической логики в их решении.
- 2. Формирование основных знаний о принципах построения алгоритмов, а так же методах анализа их свойств и структуры.
- 3. Формирование умения логически развивать отдельные формальные теории и устанавливать связь между ними.
- 4. Формирование умения конструировать логически непротиворечивые алгоритмы и применять стандартные алгоритмы дискретного программирования.
- 5. Формирование суждений по соответствующим профессиональным, научным и этическим проблемам; владение способами доказательств утверждений и теорем как основной составляющей когнитивной и коммуникативной функций личности;

#### Задачи дисциплины:

- 1. Дать студентам базовые знания по основным разделам математической логики
- 2. Познакомить студентов с основными понятиями теории алгоритмов
- 3. Научить студентов методам рассуждений и доказательств
- 4. Научить студентов выбирать, анализировать и реализовывать некоторые алгоритмы.

#### 2. Указания по проведению практических (семинарских) занятий

#### Тема 1. Основные понятия теории множеств

Практическое занятие 1.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Понятие множества и подмножества. Основные операции. Алгебра множеств.

Продолжительность занятия – 2/1 ч.

Практическое занятие 2.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Прямое произведения множеств. Отношения. Бинарные отношения. Отношение эквивалентности Продолжительность занятия — 2/1 ч.

#### Тема 2. Исчисление высказываний

Практическое занятие1.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Логические высказывания. Таблицы истинности.

 $\Pi$ родолжительность занятия — 2/1 ч.

Практическое занятие2.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Логические следствия. Проверка непротиворечивости системы высказываний. Способы проверки логических следствий

Продолжительность занятия – 2/1 ч.

#### Тема 3. Исчисление предикатов

Практическое занятие 1.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Предикаты и кванторы. Формализация логических высказываний.

Продолжительность занятия – 2/1 ч.

Практическое занятие 2.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Область действия кванторов. Правило отрицания.

Продолжительность занятия – 2/1 ч.

Практическое занятие 3.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

Тема и содержание практического занятия: Процедура приписывания истинностных значений.

Продолжительность занятия – 2/1 ч.

Практическое занятие 4.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Общезначность. Доказательство общезначности.

Продолжительность занятия – 2/1 ч.

#### Тема 4. Элементы теории алгоритмов

Практическое занятие 1.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Запись алгоритма. Составление блок-схем. Оценка временной сложности алгоритма.

Продолжительность занятия – 2/- ч.

Практическое занятие 2.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Вычисляемые функции. Рекурсивные функции.

Продолжительность занятия – 2/1 ч.

Практическое занятие 3.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Нормальный алгоритм Маркова. Нормальные алгоритмы.

Продолжительность занятия – 2/1 ч.

Практическое занятие4.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Машины Тьюринга. Алгоритмы Тьюринга

Продолжительность занятия – 2/- ч.

#### Тема 5. Некоторые алгоритмы дискретной оптимизации

Практическое занятие 1.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Сети. Задача о наикратчайшем пути. Алгоритм Дейкстры.

Продолжительность занятия – 2/1 ч.

Практическое занятие 2.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Распределительные задачи. Венгерский метод. Приложение к задаче о наикратчайшем пути.

*Продолжительность* занятия -2/-4.

Практическое занятие 3.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Потоки в сетях. Задача о максимальном потоке.

 $\Pi$ родолжительность занятия -2/1 ч.

Практическое занятие 4.

Вид практического занятия: решение задач

Образовательные технологии: Информационные, направленные на закрепление базовых ЗУН. Операционные, обеспечивающие тренировку широкого спектра интеллектуальных действий.

*Тема и содержание практического занятия*: Задача о коммивояжере. Задачи теории расписаний.

*Продолжительность* занятия -2/-4.

#### 3. Указания по проведению лабораторного практикума

Не предусмотрено учебным планом.

#### 4. Указания по проведению самостоятельной работы студентов

*Цель самостоятельной работы*: подготовить бакалавров к самостоятельному научному творчеству.

Задачи самостоятельной работы:

- изучение теоретического лекционного курса;
- приобретение умений и навыков использовать изученные математические методы для самостоятельного решения и исследования типовых задач;
- развитие способностей к логическому и алгоритмическому мышлению;
- воспитание математической культуры аналитических преобразований

Объем времени на самостоятельную работу, и виды самостоятельной работы представлены в таблице 1.

Таблица 1

| т иолица т |                                                |            |                                                                                                                                                                                                      |  |  |  |
|------------|------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| №          | Виды самостоятельной                           | Количество | Перечень заданий                                                                                                                                                                                     |  |  |  |
| п/п        | работы                                         | часов      |                                                                                                                                                                                                      |  |  |  |
| 1.         | Вопросы, выносимые на самостоятельное изучение | 30         | Закрепляя пройденный материал, в дополнение к конспектам лекционных и практических занятий рекомендуется использовать литературу и другие источники, примерный перечень которых имеется в разделе 7. |  |  |  |
| 2.         | Подготовка к практическим занятиям             | 30         | Проработка лекций, изучение рекомендованной литературы.                                                                                                                                              |  |  |  |
| 3          | Подготовка к экзамену                          | 20         | Проработка лекций, практик, изучение рекомендованной литературы. Консультации у преподавателя.                                                                                                       |  |  |  |
|            | о часов на самостоятель-<br>работу             | 80         |                                                                                                                                                                                                      |  |  |  |

#### 4.1 Тематика вопросов для самостоятельного изучения

1. Дайте определения конечного и счетного множеств.

- 2. Дайте определения подмножества, равенства множеств, пустого множества, собственного подмножества, несобственного подмножества, универсального множества.
- 3. Дайте определения объединения, пересечения, разности множеств, дополнения множества, проиллюстрируйте их диаграммами Эйлера Венна.
  - 4. Укажите основные свойства операций над множествами.
- 5. Дайте определения декартова произведения множеств, декартовой степени множества.
- 6. Дайте определение симметрической разности множеств, проиллюстрируйте его диаграммой Эйлера Венна.
- 7. Дайте определения отображения, образа элемента, прообраза элемента, образа множества, прообраза множества.
- 8. Дайте определения инъективного, сюръективного, биективного отображений.
- 9. Даны множества  $A = \{2, 3, 4, 8\}, B = \{1, 2, 8, 12\}, C = \{1, 8, 9\}, U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}.$  Перечислите все элементы следующих множеств:
  - 1)  $D = (A \cup C) \setminus (B \cap \overline{A});$
  - 2)  $E = (A \cap B \cup B \cap C) \times D$ .
- 10. Используя свойства операций над множествами, преобразуйте выражения:
  - 1)  $(A \setminus B) \cap B$ ;
  - 2)  $(A \setminus B) \cap (A \cup B)$ ;
  - 3)  $\overline{(A \cap B)} \cap \overline{(B \setminus A)}$ .
- 11. Факультативный курс по математике посещают 20 студентов, а по физике 30 студентов. Найдите число студентов, посещающих факультатив по математике или физике, если:
  - 1) факультативные занятия проходят в одно и то же время;
- 2) факультативные занятия проходят в разные часы и 10 студентов посещают оба факультатива.
- 12. Пусть  $X = \{a, b, c, d\}$ . Рассмотрим отображение  $f : X \to X : a \to b$ ,  $b \to c$ ,  $c \to d$ ,  $d \to a$ . Определите, является ли оно биективным.
- 13. Даны отображения в виде обычных числовых функций y = f(x), действующие из D(y) в R  $(f:D(y) \rightarrow R)$ :

1) 
$$y = x^2$$
, 2)  $y = x^3$ , 3)  $y = \sin x$ , 4)  $y = \sqrt{x}$ , 5)  $y = 7$ .

Классифицируйте каждое из них на инъективность, сюръективность, биективность.

14. Определите образ отрезка [0, 2] при отображении  $f : R \to R$ , где  $f(x) = x^2$ . Определите прообраз отрезка [4, 9] при данном отображении.

## **5.** Указания по проведению курсовых работ Не предусмотрено учебным планом.

#### 5. Перечень основной и дополнительной учебной литературы

#### Основная литература:

- 1. Горлач, Б.А. Линейная алгебра и аналитическая геометрия : учебник / Б.А. Горлач. Санкт-Петербург : Лань, 2017. 300 с. ISBN 978-5-8114-2717-8. Текст : электронный // Электронно-библиотечная система «Лань» : [сайт]. URL: <a href="https://e.lanbook.com/book/99103">https://e.lanbook.com/book/99103</a>. Режим доступа: для авториз. пользователей.
- 2. Беклемишев, Д.В. Курс аналитической геометрии и линейной алгебры: учебник / Д.В. Беклемишев. 16-е изд., стер. Санкт-Петербург: Лань, 2019. 448 с. ISBN 978-5-8114-1844-2. Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. URL: <a href="https://e.lanbook.com/book/112054">https://e.lanbook.com/book/112054</a>. Режим доступа: для авториз. пользователей.
- 3. Кряквин В. Д. Линейная алгебра в задачах и упражнениях / Кряквин В.Д. Москва: Лань, 2016. ISBN 978-5-8114-2090-2. URL: http://e.lanbook.com/books/element.php?pl1\_id=72583.
- 4. Краткий курс аналитической геометрии: Учебник/ Ефимов Н. В., 14-е изд., исправ. М.: ФИЗМАТЛИТ, 2014. 240 с.: 60х90 1/16 (Переплёт) ISBN 978-5-9221-1419-6, 500 экз. Режим доступа: http://znanium.com/catalog/product/537806
- 5. Шершнев, В. Г. Основы линейной алгебры и аналитической геометрии : учебное пособие / В. Г. Шершнев. Москва : ИНФРА-М, 2022. 168 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-005479-7. Текст : электронный. URL: <a href="https://znanium.com/catalog/product/1843639">https://znanium.com/catalog/product/1843639</a>. Режим доступа: по подписке.
- 6. Шуман, Г. И. Алгебра и геометрия: учебное пособие / Г. И. Шуман, О. А. Волгина, Н. Ю. Голодная. Москва: РИОР: ИНФРА-М, 2019. 160 с. (Высшее образование). ISBN 978-5-369-01708-1. Текст: электронный. URL: https://znanium.com/catalog/product/1002027. Режим доступа: по подписке.
- 7. Денисов, В. И. Алгебра и геометрия: практикум: учебник: [16+] / В. И. Денисов, В. М. Чубич, О. С. Черникова; Новосибирский государственный технический университет. Новосибирск: Новосибирский государственный технический университет, 2018. 307 с.: ил. (Учебники НГТУ). Режим доступа: по подписке. URL:

<u>https://biblioclub.ru/index.php?page=book&id=576183</u>. – Библиогр. в кн. – ISBN 978-5-7782-3791-9. – Текст : электронный.

#### Дополнительная литература:

- 1. Бортаковский, А. С. Линейная алгебра в примерах и задачах : учебное пособие / А. С. Бортаковский, А. В. Пантелеев. 3-е изд., стер. Москва : ИНФРА-М, 2023. 592 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-010586-4. Текст : электронный. URL: <a href="https://znanium.com/catalog/product/1907364">https://znanium.com/catalog/product/1907364</a>. Режим доступа: по подписке.
- 2. Линейная алгебра. Линейные операторы. Квадратичные формы. Комплексные числа: Учебное пособие / Рубашкина Е.В. М.: НИЦ ИНФРА-М, 2016. 38 с.: 60х90 1/16. (Высшее образование) (Обложка) ISBN 978-5-16-011858-1 http://znanium.com/bookread2.php?book=544419
- 3. Кирсанов, М. Н. Алгебра и геометрия. Сборник задач и решений с применением системы Maple: учебное пособие / М. Н. Кирсанов, О. С. Кузнецова. Москва: ИНФРА-М, 2023. 272 с. (Высшее образование: Бакалавриат). DOI 10.12737/20873. ISBN 978-5-16-012325-7. Текст: электронный. URL: https://znanium.com/catalog/product/1907684. Режим доступа: по подписке.
- 4. Алгебра. Ч. 4. Задачник-практикум: Учебное пособие / Шмидт Р.А. СПб:СПбГУ, 2016. 184 с.: ISBN 978-5-288-05650-5 http://znanium.com/bookread2.php?book=941730
- 5. Ледовская, Е. В. Линейная алгебра и аналитическая геометрия: сборник задач / Е. В. Ледовская ; Федеральное агентство морского и речного транспорта, Московская государственная академия водного транспорта, Государственный университет морского и речного флота им.адмирала С.О. Макарова. Москва : Альтаир : МГАВТ, 2017. 100 с. : ил. Режим доступа: по подписке. URL: <a href="https://biblioclub.ru/index.php?page=book&id=483851">https://biblioclub.ru/index.php?page=book&id=483851</a>. Библиогр.: с. 6. Текст : электронный.
- 6. Абдрахманов, В. Г. Высшая математика: линейная алгебра и аналитическая геометрия: учебное пособие: [16+] / В. Г. Абдрахманов. Москва: ФЛИНТА, 2019. 179 с.: ил. Режим доступа: по подписке. URL: <a href="https://biblioclub.ru/index.php?page=book&id=607459">https://biblioclub.ru/index.php?page=book&id=607459</a>. ISBN 978-5-9765-4335-5. Текст: электронный.

## 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

#### Интернет-ресурсы:

http://www.znanium.com/ - электронно-библиотечная система http://www.e.lanbook.com/ - ЭБС Издательства "ЛАНЬ" http://www.rucont.ru/- электронно-библиотечная система http://www.biblioclub.ru/ -университетская библиотека онлайн

#### 8. Перечень информационных технологий

Перечень программного обеспечения: Microsoft Office или свободно распространяемые аналоги.

**Информационные справочные системы:** Электронные ресурсы образовательной среды Университета