

ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ
Проректор по учебной работе
Е.К. Самаров
«Друшей 2021г.

ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ КАФЕДРА МАТЕМАТИКИ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ»

Направление подготовки: 01.03.02 Прикладная математика и информатика

Профиль: Искусственный интеллект и управление в ракетно-космических си-

стемах

Уровень высшего образования: бакалавр

Форма обучения: очная

Авторы: к.ф.-м.н., доцент Борисова О.Н., д.ф.-м.н., профессор Самаров К.Л. Рабочая программа дисциплины: Математические методы исследования операций: – Королев МО: МГОТУ, 2021

Рецензент: д.э.н. профессор Вилисов В.Я.

Рабочая программа составлена в соответствии с требованиями федерального Государственного образовательного стандарта высшего образования по направлению подготовки бакалавров 01.03.02 «Прикладная математика и информатика» и Учебного плана, утвержденного Ученым советом МГОТУ.

Протокол № <u>13</u> от <u>12 июше</u> 2021 года.

Рабочая программа рассмотрена и одобрена на заседании кафедры:

Заведующий кафедрой (ФИО, ученая степень, звание, подпись)	Бугай И.В. к.т.н., доцент	Espair U.B. gegens	Egreus U.B. gorséns lagí	
Год утверждения (пере- утверждения)	2021	2022	2013	
Номер и дата протокола заседания кафедры	W10 05 88 05.21	N11 OF 10.06,22	NO 05 ex.04.23	

n -			
Рабочая	программа	согласована	:

Руководитель ОПОП ВО	ldest	к.т.н., доцент И.В. Бугай
	(//	

Рабочая программа рекомендована на заседании УМС:

Год утверждения (пере- утверждения)	2021	EOR	2013	
Номер и дата протокола	N7 05	NS OF	NG 05	
заседания УМС	15.06.21	21.06.22	16.05.28	

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Целью изучения дисциплины является

- Развить системное мышление слушателей путем детального анализа подходов к математическому моделированию и сравнительного анализа разных типов моделей;
- Ознакомить слушателей с математическими свойствами моделей и методов оптимизации, которые могут использоваться при анализе и решении широкого спектра прикладных задач.

В процессе обучения студент приобретает и совершенствует следующие компетенции:

общепрофессиональные компетенции (ОПК):

– Способен решать задачи профессиональной деятельности с использованием существующих информационно-коммуникационных технологий и с учетом основных требований информационной безопасности (ОПК-4).

профессиональные компетенции (ПК):

 Способность использовать современные методы разработки и реализации конкретных алгоритмов математических моделей на базе языков программирования и пакетов прикладных программ (ПК-3).

Основными задачами дисциплины являются:

- освоение студентами базовых знаний в области построения математических моделей.
- получение студентами умений и навыков проведения математического моделирования и анализа в области их профессиональной деятельности.

После завершения освоения данной дисциплины студент должен: *Знать*

- основные положения и концепции прикладного и системного программирования, архитектуры компьютеров и систем, современные языки программирования;
- методы и приемы формализации задач;
- методы и средства проектирования программного обеспечения, программных интерфейсов;

Уметь:

- использовать технологии создания и эксплуатации программных продуктов и программных комплексов в профессиональной деятельности;
- выбирать средства и вырабатывать реализации требований к программному обеспечению;
- проводить оценку и обоснование рекомендуемых решений;

Владеть:

- практическими навыками разработки ПО;
- методами и средствами проектирования баз данных.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина «Математические методы исследования операций» относится к обязательной части основной профессиональной образовательной программы подготовки бакалавров по направлению подготовки 01.03.02 «Прикладная математика и информатика».

Дисциплина базируется на дисциплинах: «Линейная алгебра», «Дискретная математика», «Математический анализ» и компетенциях: ПК-2, ОПК-1.

Знания и компетенции, полученные при освоении дисциплины, являются базовыми для изучения дисциплин: «Системы поддержки принятия решений», «Математические методы экспертных систем», «Искусственный интеллект», и др., и выполнения выпускной квалификационной работы бакалавра.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины составляет 7 зачетных единиц, 252 часа.

Таблица 1

Виды занятий	Всего часов	Семестр	Семестр 4	Семестр 5	Семестр
Общая трудоемкость	252		108	144	
0.	ІНАЯ ФОРМ	а обучен	ия		
Аудиторные занятия	96		48	48	
Лекции (Л)	32		16	16	
Практические занятия (ПЗ)	64		32	32	
Лабораторные работы (ЛР)					
Самостоятельная работа	156		60	96	
Курсовые работы (проекты)				+	
Расчетно-графические работы	-				
Контрольная работа, домашнее задание					
Текущий контроль знаний	Тест		Тест	Тест	
Вид итогового контроля	Зачет с оценкой/ Экзамен		Зачет с оценкой	Экзамен	
ЗАОЧНАЯ ФОРМА І	НЕ ПРЕДУСМ	ОТРЕНА У	чебным	ПЛАНОМ	•

4.Содержание дисциплины

4.1. Темы дисциплины и виды занятий

Таблица 2

Наименование тем	Лекции, час.	Практические занятия, час	Занятия в интерактив- ной форме	Код компетенций
4 семестр	16	32	10	
Тема 1. Гладкая конечномерная оптимизация.	4	8	2	ОПК-4, ПК-3
Тема 2. Задача нели- нейного программиро- вания	6	12	4	ОПК–4, ПК–3
Тема 3. Задача линей- ного программирова- ния	6	12	4	ОПК-4, ПК-3
5 семестр	16	32	10	
Тема 4. Теория игр	4	8	2	ОПК-4, ПК-3
Тема 5. Оптимизация в условиях неопределенности	4	8	2	ОПК-4, ПК-3
Тема 6. Основные понятия многокритериальной оптимизации	4	8	2	ОПК-4, ПК-3
Тема 7. Оптимизация динамических систем	4	8	4	ОПК-4, ПК-3
Итого:	32	64	20	

4.2 Содержание дисциплины

Тема 1. Гладкая конечномерная оптимизация. Задачи на минимум. Гладкие конечномерная задача без ограничений. Теорема Ферма как необходимое условие локального экстремума. Гессиан функции. Необходимые и достаточные условия экстремума второго порядка. Положительная и отрицательная определенность квадратичной формы. Критерий Сильвестра.

Тема 2. Задача нелинейного программирования. Конечномерные задачи с ограничениями типа равенства и неравенства. Формулировка теоремы о неявной функции (для линейной и нелинейной системы уравнений). Формулировка принципа Лагранжа для задач со смешанными ограничениями типа равенства и неравенства. Достаточные условия оптимальности в задачах с ограничениями. Постановка задачи об определении портфеля ценных бумаг Марковица—Тобина с наименьшим риском при заданном среднем уровне дохода. Алгоритм решения задачи с использованием принципа Лагранжа.

Тема 3. Задача линейного программирования. Формулировка задачи линейного программирования (ЛП). Примеры задач ЛП. Стандартная (нормальная) и каноническая формы представления задачи ЛП и сведение к ним. Свойства до-

пустимого множества и оптимального решения в задаче ЛП. Основные представления о методах решения задач ЛП, основанных на направленном переборе вершин (симплекс-метод и др.). Двойственные задачи линейного программирования. Теоремы двойственности. Интерпретация двойственных переменных. Анализ чувствительности оптимального решения к параметрам задачи линейного программирования. Некоторые специальные задачи линейного программирования (транспортная, производственно-транспортная и т.д.).

- **Тема 4. Теория игр.** Основные понятия теории игр. Определение антагонистической игры в нормальной форме. Равновесная ситуация. Чистые стратегии. Принцип минимакса. Оптимальные смешанные стратегии и их основные свойства. Поиск оптимальных стратегий с помощью решения задач линейного программирования. Понятие о корпоративных играх и о различных определениях их решений. Равновесие по Нэшу. Парето-оптимальность.
- **Тема 5. Оптимизация в условиях неопределенности.** Задача выбора решений в условиях неопределенности. Критерии выбора решений в условиях неопределенности (принцип гарантированного результата, критерий Гурвица, критерий Байеса-Лапласа, критерий Сэвиджа). Применение принципа гарантированного результата в задачах экономического планирования. Множество допустимых гарантирующих программ. Наилучшая гарантирующая программа. Принятие решение при случайных параметрах. Вероятностная информация о параметрах. Принятие решений на основе математического ожидания. Случайность и риск. Учет склонности к риску.
- **Тема 6. Основные понятия многокритериальной оптимизации.** Происхождение и постановка задачи многокритериальной оптимизации. Множество достижимых критериальных векторов. Доминирование и оптимальность по Парето. Эффективные решения и пареттова граница. Понятие лица, принимающего решение. Основные типы методов решения задач многокритериальной оптимизации. Методы аппроксимации пареттовой границы.
- **Тема 7. Оптимизация динамических систем.** Динамические задачи оптимизации. Примеры: простейшая динамическая модель производства и задача поиска оптимальной производственной программы. Многошаговые и непрерывные модели. Управление и переменная состояния в динамических моделях. Задание критерия в динамических задачах оптимизации. Принципы построения динамического управления: построение программной траектории и использование обратной связи. Динамическое программирование в многошаговых задачах оптимизации. Принцип оптимальности. Функция Беллмана. Уравнение Беллмана в многошаговых задачах оптимизации. Решение задач динамического программирования.

5.Перечень учебно-методического обеспечения для самостоятельной работы по дисциплине

1. «Методические указания для обучающихся по освоению дисциплины»

6.Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Структура фонда оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине приведена в Приложении 1 к настоящей рабочей программе.

7.Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Математические методы и модели исследования операций / ред. В.А. Колемаев. Москва: Юнити-Дана, 2015. 592 с. : ил., табл., граф. Режим доступа: по подписке.
 - URL: http://biblioclub.ru/index.php?page=book&id=114719
- 2. Шапкин А.С. Математические методы и модели исследования операций: учебник / А.С. Шапкин, В.А. Шапкин. 7-е изд. Москва: Дашков и К°, 2019. 398 с.: ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=573373
- 3. Донкова И.А. Исследование операций и методы оптимизации: учебное пособие: [16+] / И.А. Донкова; Тюменский государственный университет. Тюмень: Тюменский государственный университет, 2017. 196 с.: ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=572102

Дополнительная литература:

- 1. Ловянников Д.Г. Исследование операций: учебное пособие / Д.Г. Ловянников, И.Ю. Глазкова; Министерство образования РФ, Федеральное государственное автономное образовательное учреждение высшего образования «Северо-Кавказский федеральный университет». Ставрополь: СКФУ, 2017. 110 с.: ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=467012
- 2. Исследование операций: учебное пособие / сост. А.С. Адамчук, С.Р. Амироков, А.М. Кравцов; Министерство образования и науки Российской Федерации и др. Ставрополь: СКФУ, 2015. 178 с. : ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=457348
- 3. Самков Т.Л. Математические методы исследования экономики и математическое программирование: учебное пособие: [16+] / Т.Л. Самков; Новосибирский государственный технический университет. Новосибирск: Новосибирский государственный технический университет, 2018. 115 с.: ил., табл. Режим доступа: по подписке. —

URL: http://biblioclub.ru/index.php?page=book&id=575280

8.Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Интернет-ресурсы:

http://www.znanium.com/ - электронно-библиотечная система

http://www.e.lanbook.com/ - ЭБС Издательства "ЛАНЬ"

http://www.rucont.ru/- электронно-библиотечная система

http://www.biblioclub.ru/ -университетская библиотека онлайн

9. Методические указания для обучающихся по освоению дисциплины

Методические указания для обучающихся по освоению дисциплины приведены в Приложении 2 настоящей рабочей программе.

10.Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: MS Office

Информационные справочные системы: Электронные ресурсы образовательной среды Университета

11.Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Лекционные занятия:

- аудитория, оснащенная презентационной техникой (проектор, экран); доской для письма мелом или фломастерами;
 - комплект электронных презентаций/слайдов.

Практические занятия:

- аудитория, оснащенная мультимедийными средствами (проектор, ноутбук), демонстрационными материалами (наглядными пособиями); доской для письма мелом или фломастерами;
- рабочее место преподавателя, оснащенное компьютером с доступом в Интернет;
- рабочее место студента, оснащенное компьютером с доступом в Интернет.

ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ КАФЕДРА МАТЕМАТИКИ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ» (Приложение 1 к рабочей программе)

Направление подготовки: 01.03.02 Прикладная математика и информатика

Профиль: Искусственный интеллект и управление в ракетно-космических системах

Уровень высшего образования: бакалавр

Форма обучения: очная

Королев 2021

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

№ π/π	Индекс компе- тенции	Содержание компетенции (или ее части)*	Раздел дисци- плины, обеспе- чивающий	В результате изучения раздела дисциплины обеспечивающего формирование компетенции (или ее части), обучающийся должен:		
			формирование компетенции	Знать	уметь	владеть
1.	ОПК-4	Способен решать задачи профессиональной деятельности с использованием существующих информационно-коммуникационных технологий и с учетом основных требований информационной безопасности	(или ее части) Тема 1-7.	- основные по- ложения и концеп- ции при- кладного и системного про- грамми- рования, архитек- туры ком- пьютеров и систем, современные языки програм- мирования.	- использовать технологии создания и эксплуатации программных продуктов и программных комплексов в профессиональной деятельности.	- практически- ми навыками разработки ПО.
2.	ПК-3	Способность использовать современные методы разра- ботки и реализации кон- кретных алгоритмов мате- матических моделей на базе языков программирования и пакетов прикладных про- грамм	Тема 1-7.	- методы и приемы формали- зации за- дач; - методы и средства проекти- рования про- граммного обеспечения, про- граммных интерфейсов	- выбирать средства и вырабатывать реализации требований к программному обеспечению; - проводить оценку и обоснование рекомендуемых решений	- Методами и средствами проектирования баз данных.

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

	nbix 5 tunux nx формирования, описание шкая оценивания							
Код компе- тенции	Инструменты, оценивающие сформированность компе-	Этапы и показатель оценивания компетенции	Шкала и критерии оценки					
ОПК-4, ПК-3	тенции Письменное задание	А) полностью сформирована 5 баллов	Проводится в письменной форме 1.Выбор оптимального метода решения задачи (1 балл)					
		В) частично	2. Умение применить выбранный метод (1					

		сформирована	балл)		
		3-4 балла	3. Логический ход решения правильный, но		
		С) сформировано менее	имеются арифметически в расчетах (1 балл)		
		30%	4. Решение задачи и получение правильного		
		1-2 балла	результата (2 балла)		
		D) не сформирована	5. Задача не решена вообще (0 баллов)		
		0 балла	Максимальная оценка - 5 баллов.		
			Время, отведенное на процедуру – до 40 мин.		
			Результаты оценочной процедуры представляются обучающимся в срок не позднее 1 недели после проведения процедуры — для текущего контроля. Оценка проставляется в электронный журнал		
ОПК-4,	Курсовая рабо-	А) полностью сформиро-	Проводится в письменной форме		
ПК-3	та	вана -5 баллов	1. Оформление в соответствии с требовани-		
		Б) частично сформиро- вана 3-4 балла	ями (1 балл);		
		В) не сформирована 2 и	2. Соответствует методическим указаниям в части структуры (1 балл);		
		менее баллов	3. Содержание курсовой работы соответ-		
		Mence cashleb	ствует заявленной тематике (1 балл);		
			4. Поставленные цели и задачи достигнуты		
			(1 балл);		
			5. Качественный и количественный состав		
			использованных источников (1 балл).		
			Максимальная оценка – 5 баллов.		
			Результаты оценочной процедуры представ-		
			ляются обучающимся в срок не позднее 1 недели после проведения процедуры – для		
			текущего контроля. Оценка проставляется в		
			электронный журнал		
L	L		электроппын журпал		

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

3.1 Примерная тематика письменных заданий (4 семестр):

Гладкие конечномерная задача без ограничений.

Найти минимум функции

ВАРИАНТ 1

$$8x^3 + 12x^2z + 6xz^2 + z^3 - 6x - 3z + x^2 - 2xz + 2z^2 + 4y^2 + 4yz$$

ВАРИАНТ 2

$$x^{3} + 9x^{2}z + 27xz^{2} + 27z^{3} - 3x - 9z + x^{2} - 8xz + 17z^{2} + 4y^{2} + 4yz$$

ВАРИАНТ 3

$$y^{3} + 9y^{2}z + 27yz^{2} + 27z^{3} - 3y - 9z + 5x^{2} - 8xy + 16y^{2} + 4xz + z^{2}$$

ВАРИАНТ 4

$$y^{3} + 6y^{2}z + 12yz^{2} + 8z^{3} - 3y - 6z + 2x^{2} - 10xy + 25y^{2} + 10xz + 25z^{2}$$

ВАРИАНТ 5

$$y^{3} + 12y^{2}z + 48yz^{2} + 64z^{3} - 3y - 12z + 10x^{2} - 30xy + 25y^{2} + 4xz + 4z^{2}$$

ВАРИАНТ 6

$$x^{3} + 3x^{2}y + 12x^{2}z + 3xy^{2} + 24xyz + 48xz^{2} + y^{3} + 12y^{2}z$$

+ $48yz^{2} + 64z^{3} - 3x - 3y - 12z + 18x^{2} - 30xy + 25y^{2}$
+ $12xz + 4z^{2}$

ВАРИАНТ 7

$$x^{3} + 3x^{2}y + 3x^{2}z + 3xy^{2} + 6xyz + 3xz^{2} + y^{3} + 3y^{2}z$$

+ $3yz^{2} + z^{3} - 3x - 3y - 3z + 18x^{2} - 6xy + y^{2} + 6xz$
+ z^{2}

ВАРИАНТ 8

$$x^{3} + 3x^{2}y + 3x^{2}z + 3xy^{2} + 6xyz + 3xz^{2} + y^{3} + 3y^{2}z$$

+ $3yz^{2} + z^{3} - 3x - 3y - 3z + 10x^{2} - 2xy + y^{2} + 12xz$
+ $4z^{2}$

ВАРИАНТ 9

$$x^{3} - 3x^{2}y + 3x^{2}z + 3xy^{2} - 6xyz + 3xz^{2} - y^{3} + 3y^{2}z$$

$$-3yz^{2} + z^{3} - 3x + 3y - 3z + 10x^{2} + 2xy + y^{2} + 12xz$$

$$+ 4z^{2}$$

ВАРИАНТ 10

$$x^{3} - 3x^{2}y + 3xy^{2} - y^{3} - 3x + 3y + 10x^{2} + 2xy + 14xz + y^{2} + 2yz + 5z^{2}$$

ВАРИАНТ 11

$$x^{3} - 6x^{2}y + 12xy^{2} - 8y^{3} - 3x + 6y + 10x^{2} + 2xy + 8xz + y^{2} + 2yz + 2z^{2}$$

ВАРИАНТ 12

$$x^{3} - 6x^{2}y + 12xy^{2} - 8y^{3} - 3x + 6y + 10x^{2} + 8xy + 2y^{2} - 6xz - 2yz + z^{2}$$

ВАРИАНТ 13

$$x^{3} - 9x^{2}y + 27xy^{2} - 27y^{3} - 3x + 9y + 34x^{2} + 16xy + 2y^{2} - 6xz - 2yz + z^{2}$$

ВАРИАНТ 14

$$8 x^{3} - 36 x^{2} y + 54 x y^{2} - 27 y^{3} - 6 x + 9 y + 26 x^{2} + 12 x y + 2 y^{2} - 10 x z - 10 y z + 25 z^{2}$$

ВАРИАНТ 15

$$8 x^{3} - 12 x^{2} y + 6 x y^{2} - y^{3} - 6 x + 3 y + 34 x^{2} + 22 x y + 5 y^{2} - 6 x z - 4 y z + z^{2}$$

ВАРИАНТ 16

$$8x^3 - 36x^2y + 54xy^2 - 27y^3 - 6x + 9y + 34x^2 + 34xy + 17y^2 - 6xz - 8yz + z^2$$

ВАРИАНТ 17

$$27x^{3} - 27x^{2}z + 9xz^{2} - z^{3} - 9x + 3z + 34x^{2} + 34xy + 17y^{2} - 6xz - 8yz + z^{2}$$

ВАРИАНТ 18

$$-8x^{3} - 12x^{2}z - 6xz^{2} - z^{3} + 6x + 3z + 34x^{2} + 34xy + 17y^{2}$$
$$-36xz - 48yz + 36z^{2}$$

ВАРИАНТ 19

$$-8x^{3} - 12x^{2}y - 6xy^{2} - y^{3} + 6x + 3y + 34x^{2} + 60xy + 34y^{2}$$
$$-36xz - 60yz + 36z^{2}$$

ВАРИАНТ 20

$$-x^{3} - 3x^{2}y + 3x^{2}z - 3xy^{2} + 6xyz - 3xz^{2} - y^{3} + 3y^{2}z$$
$$-3yz^{2} + z^{3} + 3x + 3y - 3z + 34x^{2} + 30xy + 25y^{2}$$

ВАРИАНТ 21

$$y^{3} + 6y^{2}z + 12yz^{2} + 8z^{3} - 3y - 6z + 2x^{2} - 10xy + 25y^{2} + 10xz + 25z^{2}$$

ВАРИАНТ 22

$$x^{3} + 3x^{2}y + 12x^{2}z + 3xy^{2} + 24xyz + 48xz^{2} + y^{3} + 12y^{2}z$$

+ $48yz^{2} + 64z^{3} - 3x - 3y - 12z + 18x^{2} - 30xy + 25y^{2}$
+ $12xz + 4z^{2}$

ВАРИАНТ 22

$$x^{3} + 3x^{2}y + 3x^{2}z + 3xy^{2} + 6xyz + 3xz^{2} + y^{3} + 3y^{2}z$$

+ $3yz^{2} + z^{3} - 3x - 3y - 3z + 10x^{2} - 2xy + y^{2} + 12xz$
+ $4z^{2}$

ВАРИАНТ 23

$$x^{3} - 3x^{2}y + 3xy^{2} - y^{3} - 3x + 3y + 10x^{2} + 2xy + 14xz + y^{2} + 2yz + 5z^{2}$$

ВАРИАНТ 24

$$8 x^{3} - 36 x^{2} y + 54 x y^{2} - 27 y^{3} - 6 x + 9 y + 26 x^{2} + 12 x y + 2 y^{2} - 10 x z - 10 y z + 25 z^{2}$$

ВАРИАНТ 25

$$x^{3} - 9x^{2}y + 27xy^{2} - 27y^{3} - 3x + 9y + 34x^{2} + 16xy + 2y^{2} - 6xz - 2yz + z^{2}$$

Задача нелинейного программирования. Имеется 4 вида ценных бумаг со средней доходностью m_0 , m_1 , m_2 , m_3 копеек на каждый рубль вложений соответственно. Известна ковариационная матрица A совместного распределения доходности бумаг. Требуется сформировать портфель ценных бумаг, распределив сумму, равную 1 тысяче рублей, обеспечив среднюю доходность портфеля равную 5n тысячам копеек, при условии наименьшего риска.

$$m_0=3, m_1=9, m_2=15, m_3=27, A = \begin{pmatrix} m & 1 & 1 \\ 1 & 9/2 & 2n \\ 1 & m & n \end{pmatrix}$$

Задачи линейного программирования:

Задача оптимального производства продукции. Предприятие планирует выпуск двух видов продукции I и II, на производство которых расходуется три вида сырья A, B, и C. Потребность a_{ii} на каждую единицу j-го вида продукции i-го

вида сырья, запас b_i соответствующего сырья и прибыль c_j от реализации единицы j-го вида продукции задана таблицей:

Виды	Виды продукции		Запасы
сырья	I	II	сырья
A	$a_{11} = n$	$a_{12} = 2$	$b_1 = mn + 5$
В	$a_{21} = 1$	$a_{22} = 1$	$b_2 = m + n + 3$
С	$a_{31} = 2$	$a_{32} = m+1$	$b_3 = mn + +4m + n + 4$
Прибыль	$c_1 = m + 2$	$c_2 = n + 1$	
План (ед)	x_1	x_2	

Для производства двух видов продукции I и II с планом x_1 и x_2 единиц составит целевую функцию прибыли Z и соответствующую систему ограничений по запасам сырья, предполагая, что требуется изготовить в сумме не менее n единиц обоих видов продукции.

Составить оптимальный план (x_1, x_2) производства продукции, обеспечивающий максимальную прибыль Z_{\max} . Определить остатки каждого вида сырья. Задачу решить симплекс-методом.

Построить по полученной системе ограничений многоугольник допустимых решений и найти оптимальный план производства геометрическим путем. Определить соответствующую прибыль $Z_{\rm max}$.

Произвести анализ модели на чувствительность. Найти двойственную цену дефицитных видов сырья, максимальное значение закупок дефицитных видов сырья, которое приносит прибыль при сохранении статуса сырья, а также границы изменения цены на товар, при которых найденный план остается оптимальным.

Транспортные задачи

Задача №1

Запа	Потребности	B_1	B_2	B_3
Sana	асы	$b_1 = 190$	$b_2 = 120$	$b_3 = 10m$
$A_{\rm l}$	$a_1 = 100$	4	2	m
A_2	$a_2 = 200$	n	5	3
A_3	$a_3 = 60 + 10n$	1	m+1	6

Найти план с минимальной суммарной стоимостью перевозок.

Задача №2

Завод		Магазины				
	№ 1	№ 2	№3	№4	№5	заводов
I	n+m	m	2 <i>n</i>	n+m	n	10m
II	2 <i>m</i>	m+5	n	2n+m	m+n	20n
III	n+3	m+1	n+2	2m+n	n	10(m+2n)
Потребности	5 <i>m</i>	10n	10n	5 <i>m</i> +10 <i>n</i>	10m	
магазинов						

В городе имеется три хлебозавода, которые выпускают одинаковую продукцию и развозят ее по 5 магазинам. Стоимость доставки пропорциональна расстоянию от завода до магазина. Определите план поставок, минимизирующий суммарные транспортные расходы магазинов.

3.2 Примерная тематика письменных заданий (5 семестр):

Теория игр

Задача №1. Рассматривается антагонистическая игра двух лиц с нулевой суммой. Найти верхнюю и нижнюю цену игры.

Платежная матрица
$$\begin{pmatrix} 2 & n & m \\ n+m & 4 & n+6 \\ m & 3n & 5m \\ m+2n & n & 6 \end{pmatrix}$$

Задача №2. Рассматривается антагонистическая игра двух лиц с нулевой суммой

и платежной матрицей
$$\begin{pmatrix} m & n & m+n & 2m+n \\ m+n & m+2n & n & m \end{pmatrix}$$

Найти цену игры и оптимальные смешанные стратегии игроков графическим способом.

Задача №3. Игра решена симплекс-методом

4a 1	a	125.	1111	na pc	mena emmi	DICKE METO,	дом	
]	Б	y_1	y_2	y_3	S_1	S_2	S_3	
3	v_1	1	0	0	n	-m	-3/m	3m+n
								5m + 2n
J	\mathcal{V}_2	0	1	0	4n/5	1	-m/5n	3m+2n-3
								5m + 2n
J	v_3	0	0	1	2/3	-2	m/4n	m+n+3
								$\overline{5m+2n}$
4	ζ	0	0	0	4m+1	2m+2n	m+2n-1	<u>7<i>m</i>+4<i>n</i></u>
					5m+2n	$\overline{5m+2n}$	5m+2n	5m+2n

Найти цену игры и оптимальные смешанные стратегии игроков.

Принятие решений в условиях неопределенности. Проанализируйте матрицу доходов и найдите операции, оптимальные по критериям Лагранжа, Сэвиджа, Вальда и Гурвица ($\lambda = 1/2$)

$$Q = \begin{pmatrix} m & 4 & 6 & 12 \\ 2 & 6 & 8 & 14 \\ n & 1 & 2 & 8 \\ 2 & 3 & n+1 & 10 \end{pmatrix}$$

Сетевое и календарное планирование. Сетевая модель состоит из 9 этапов и включает в себя следующие операции:

Операция	1→2	1→3	1→4	2->5	3→5	4→5	2->6
Продолжительность	m	n	m+2	n+1	m+3	n+2	m+2
Число рабочих,	5	3	2	4	3	6	4
занятых на							
операции							

Операция	4→8	5→6	5→7	5→8	6→9	7→9	8→9
Продолжительность	n	n+2	m+1	n+1	n+1	n+2	m+3
Число рабочих,	5	2	1	5	3	2	4
занятых на							
операции							

Постройте сетевой граф модели. Для каждого i определите раннее начало операций $\langle i \rangle$, стартующих на i-м этапе, и позднее окончание операций [i], заканчивающихся на i-м этапе. Для каждой операции вида $i \rightarrow j$ определите раннее и позднее начало операции, и ранее и позднее окончание операции, а также полный и свободный резерв операции. Выпишете все критические пути. Постройте календарный график потребности в рабочей силе, сначала исходя из ранних сроков начала операций, а затем - из поздних сроков начала операций. Постройте календарный график, в котором потребность в рабочей силе распределена максимально равномерно по времени.

Динамическое программирование. Фирма, в состав которой входит три предприятия, принимает решение о комплексной реконструкции этих предприятий. В следующей таблице указаны 4 возможных решения по каждому предприятию, затраты c_i на реализацию таких решений и чистая прибыль R_i как результат принятого решения (в млн. руб.)

	1-е пр	1-е предприятие		едприятие	3-е пр	едприятие
	c_1 R_1		C2	R_2	С3	R_3
Оставляем в прежнем виде	0	0	0	0	0	0
Малая механизация	m	m+n	1	1+m	n	n+m
Частичная модернизация	m+5	2 <i>m</i> + <i>n</i> +3	5	2 <i>n</i> + <i>m</i>	n+5	n+3m
Полная реконструкция	m+n+5	2m+3n+3	n+5	3n+m	n+15	5n+6m

Требуется, используя метод динамического программирования, составить план реконструкции предприятий, обеспечивающий максимальную прибыль, при условии, что фирма может вложить в реконструкцию предприятий не более m+2n+15 млн. руб.\

Каждому студенту при поступлении присваивается учебный шифр. Он указан в зачетной книжке и студенческом билете. Вариант задания выбирается в соответствии с двумя последними цифрами шифра A и B. Каждая задача зависит от двух числовых параметров m и n, которые определяются по цифрам A и B из таблип:

٠,٠										
A	0	1	2	3	4	5	6	7	8	9
m	2	6	4	8	8	2	6	4	4	6
В	0	1	2	3	4	5	6	7	8	9
n	3	5	1	7	9	1	3	7	5	9

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Формой контроля знаний являются две текущие аттестации в форме тестов в каждом семестре, промежуточная аттестация в форме зачета с оценкой (4

семестр) и итоговая аттестация в форме экзамена (5 семестр).

CCIVI	(CC1P)		ал аттесте	щия в форме	JKJamena (J	ceweerp).
Не- деля те- ку- щего кон- троля	Вид оце- ноч- ного сред- ства	Код компе- тенций, оцени- вающий знания, умения, навыки	Содержа- ние оце- ночного средства	Требования к выполнению	Срок сдачи (неделя се- местра)	Критерии оценки по содержанию и качеству с указанием баллов
Со- гласно графи- ка учеб- ного про- цесса	Те- сти- рова- ние 1,2	ОПК-4 ПК-3	20 вопросов	Компьютерное тестирование; время, отведенное на процедуру - 40 минут	Результаты тестирования предоставляются в день проведения процедуры	Критерии оценки определяются процентным соотношением. Не явка - 0 Удовлетворительно - от 51% правильных ответов. Хорошо - от 70%. Отлично – от 90%. Максимальная оценка – 5 баллов
Со- гласно графи- ка учеб- ного про- цесса	Зачет с оцен кой	ОПК-4 ПК-3	1 теоретический вопрос и 3 задачи на различные темы курса	Зачет проводится в письменной форме, путем ответа на вопросы. Время, отведенное на процедуру – 50 минут.	Результаты предоставлянотся в день проведения зачета	Критерии оценки: «Отлично»: знание основных понятий предмета; умение использовать и применять полученные знания на практике; работа на практических занятиях; знание основных научных теорий, изучаемых предметов; ответ на вопросы билета. «Хорошо»: знание основных понятий предмета; умение использовать и применять полученные знания на практике; работа на практических занятиях; знание основных научных теорий, изучаемых предметов; частичный ответ на вопросы билета

		T	1	1	T	1
						«Удовлетворительно»:
						демонстрирует частичные знания
						по темам дисциплин;
						незнание неумение использовать
						и применять полученные знания
						на практике;
						работал на практических заняти-
						ях
						«Неудовлетворительно»:
						демонстрирует частичные знания
						по темам дисциплин;
						незнание основных понятий
						предмета;
						неумение использовать и приме-
						нять полученные знания на прак-
						тике;
						не работал на практических заня-
						тиях;
						не отвечает на вопросы.
	Эк-	ОПК-4	1 теорети-	Экзамен про-	Результаты	Критерии оценки:
	замен	ПК-3	ческий	водится в	предоставля-	«Отлично»:
			вопрос и 3	письменной	ются в день	знание основных понятий пред-
			задачи на	форме, путем	проведения	мета;
			различные	ответа на во-	экзамена	умение использовать и приме-
			темы кур-	просы.		нять полученные знания на прак-
			ca	Время, отве-		тике;
				денное на про-		работа на практических занятиях;
				цедуру – 60		знание основных научных тео-
				минут.		рий, изучаемых предметов;
						ответ на вопросы билета.
						«Хорошо»:
						знание основных понятий пред-
						мета;
						умение использовать и приме-
						нять полученные знания на прак-
						тике;
						работа на практических занятиях;
Со-						знание основных научных тео-
графи-						рий, изучаемых предметов;
ка						частичный ответ на вопросы би-
учеб-						лета
ного						«Удовлетворительно»:
про- цесса						демонстрирует частичные знания
1						по темам дисциплин;
						незнание неумение использовать
						_ ·
						и применять полученные знания
						на практике; работал на практических заняти-
						ЯХ
						«Неудовлетворительно»:
						демонстрирует частичные знания
						по темам дисциплин;
						незнание основных понятий
						предмета;
						неумение использовать и приме-
						нять полученные знания на прак-
						тике;
						не работал на практических заня-
						тиях;
1	1		1			не отвечает на вопросы.

4.1. Типовые вопросы, выносимые на тестирование (4 семестр)

- 1. На каком этапе решения оптимальных задач выполняется построение целевой функции переменных ?
- а) Построение математической модели рассматриваемой проблемы
- b) Построение качественной модели рассматриваемой проблемы
- с) Исследование влияния переменных на значение целевой функции
- d) Экспертная проверка результатов
- е) Тестирование
- **2.** На каком этапе решения оптимальных задач строится числовая характеристика, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения?
- а) Построение математической модели рассматриваемой проблемы
- b) Построение качественной модели рассматриваемой проблемы
- с) Исследование влияния переменных на значение целевой функции
- d) Экспертная проверка результатов
- е) Тестирование
- **3.** На каком этапе решения оптимальных задач находят решение, используя методы математического программирования?
- а) Исследование влияния переменных на значение целевой функции
- b) Построение математической модели рассматриваемой проблемы
- с) Построение качественной модели рассматриваемой проблемы
- d) Экспертная проверка результатов
- е) Тестирование
- **4.** На каком этапе решения оптимальных задач устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации?
- а) Экспертная проверка результатов
- b) Исследование влияния переменных на значение целевой функции
- с) Построение математической модели рассматриваемой проблемы
- d) Построение качественной модели рассматриваемой проблемы
- е) Тестирование
- **5.** Что выполняется на этапе построения качественной модели рассматриваемой проблемы при решении оптимальных задач?
- а) выделяют факторы, которые представляются наиболее важными, и устанавливают закономерности, которым они подчиняются
- b) выполняется построение целевой функции переменных
- с) строится числовая характеристика, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения
- d) находят решение, используя методы математического программирования
- е) устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации
- **6.** Что выполняется на этапе построения математической модели рассматриваемой проблемы при решении оптимальных задач?
- а) строится числовая характеристика, большему (или меньшему) значению ко-

торой соответствует лучшая ситуация с точки зрения принимающего решения

- b) выполняется построение целевой функции переменных
- с) выделяют факторы, которые представляются наиболее важными, и устанавливают закономерности, которым они подчиняются
- d) находят решение, используя методы математического программирования
- е) устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации
- **7.** Что выполняется на этапе исследования влияния переменных на значение целевой функции при решении оптимальных задач?
- а) находят решение, используя методы математического программирования
- b) строится числовая характеристика, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения
- с) выполняется построение целевой функции переменных
- d) выделяют факторы, которые представляются наиболее важными, и устанавливают закономерности, которым они подчиняются
- е) устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации
- **8.** Что выполняется на этапе экспертной проверки результатов при решении оптимальных задач?
- а) устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации
- b) находят решение, используя методы математического программирования
- с) строится числовая характеристика, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения
- d) выполняется построение целевой функции переменных
- е) выделяют факторы, которые представляются наиболее важными, и устанавливают закономерности, которым они подчиняются
- **9.** Что выполняется на этапе построения математической модели рассматриваемой проблемы при решении оптимальных задач?
- а) выполняется построение целевой функции переменных
- b) строится числовая характеристика, большему (или меньшему) значению которой соответствует лучшая ситуация с точки зрения принимающего решения
- с) выделяют факторы, которые представляются наиболее важными, и устанавливают закономерности, которым они подчиняются
- d) находят решение, используя методы математического программирования
- е) устанавливается степень адекватности модели и моделируемого объекта в пределах точности исходной информации
- 10. Для чего предназначено моделирование?
- а) Для объяснения поведения системы и выбора параметров, характеризующих процесс
- b) Для описания достижений желаемого результата
- с) Для предоставления одной системы в знаках и символах другой системы
- d) Для описания, объяснения и прогнозирования поведения системы
- е) Для оказания помощи руководителю в принятии решений

- 11. Что понимают под эффективностью операции?
- а) степень достижения поставленной цели
- b) представление одной системы в знаках и символах другой системы
- с) количественная мера эффективности
- d) любая целенаправленная деятельность человека или коллектива людей
- е) чувствительность к изменениям деятельности
- 12. Что понимают под критерием эффективности?
- а) количественная мера эффективности
- b) представление одной системы в знаках и символах другой системы
- с) любая целенаправленная деятельность человека или коллектива людей
- d) степень достижения поставленной цели
- е) чувствительность к изменениям деятельности
- 13. Что отражает критерий эффективности?
- а) Цель операции в количественной форме
- b) Степень достижения поставленной цели
- с) Оценку вариантов достижения цели
- d) Чувствительность к изменениям деятельности
- е) Основную цель операции
- 14. Степень достижения поставленной цели операции это...
- а) эффективность
- b) модель
- с) операция
- d) критерий эффективности
- е) спрос
- 15. Количественная мера эффективности это...
- а) критерий эффективности
- b) модель
- с) операция
- d) эффективность
- е) спрос
- **16.** Какой метод применяют для отыскания экстремальных значений внутри указанной области?
- а) Методы исследования функций
- b) Метод множителей Лагранжа
- с) Методы вариационного исчисления
- d) Динамическое программирование
- е) Принцип максимума
- 17. Какие методы позволяют снизить размерность решаемой задачи?
- а) Метод множителей Лагранжа
- b) Методы исследования функций
- с) Методы вариационного исчисления
- d) Динамическое программирование
- е) Принцип максимума
- 18. Какие методы используются для решения задач, в которых критерии оптимальности представляются в виде функционалов и решениями которых служат

неизвестные функции?

- а) Методы вариационного исчисления
- b) Метод множителей Лагранжа
- с) Методы исследования функций
- d) Динамическое программирование
- е) Принцип максимума
- **19.** Какие методы используются для решения задач оптимизации дискретных многостадийных процессов ?
- а) Динамическое программирование
- b) Метод множителей Лагранжа
- с) Методы исследования функций
- d) Методы вариационного исчисления
- е) Принцип максимума
- 20. Какие методы представляют собой алгоритм определения оптимальной стратегии управления на всех стадиях процесса?
- а) Динамическое программирование
- b) Метод множителей Лагранжа
- с) Методы исследования функций
- d) Методы вариационного исчисления
- е) Принцип максимума
- 21. Какие методы используются для решения задач оптимизации процессов, описываемых системами дифференциальных уравнений?
- а) Принцип максимума
- b) Динамическое программирование
- с) Метод множителей Лагранжа
- d) Методы исследования функций
- е) Методы вариационного исчисления
- **22.** Какие методы используются для решения оптимальных задач с линейными выражениями для критерия оптимальности и линейными ограничениями на область изменения переменных ?
- а) Линейное программирование
- b) Динамическое программирование
- с) Метод множителей Лагранжа
- d) Методы исследования функций
- е) Методы вариационного исчисления
- **23.** Какие методы используются для решения оптимальных задач с нелинейными функциями цели?
- а) Методы нелинейного программирования
- b) Динамическое программирование
- с) Метод множителей Лагранжа
- d) Методы исследования функций
- е) Методы вариационного исчисления
- **24.** Какие методы используются для решения оптимальных задач, в которых критерии оптимальности и ограничения задаются в виде полиномов ?
- а) Геометрическое программирование

- b) Методы нелинейного программирования
- с) Динамическое программирование
- d) Метод множителей Лагранжа
- е) Методы вариационного исчисления
- **25.** Какие задачи решаются с помощью методов геометрического программирования?
- а) методы используются для решения оптимальных задач, в которых критерии оптимальности и ограничения задаются в виде полиномов
- b) методы используются для решения оптимальных задач с нелинейными функциями цели
- с) методы используются для решения оптимальных задач с линейными выражениями для критерия оптимальности и линейными ограничениями на область изменения переменных
- d) методы используются для решения задач оптимизации процессов, описываемых системами дифференциальных уравнений
- е) методы используются для решения задач оптимизации дискретных многостадийных процессов
- 26. Какие задачи решаются с помощью методов линейного программирования?
- а) методы используются для решения оптимальных задач с линейными выражениями для критерия оптимальности и линейными ограничениями на область изменения переменных
- b) методы используются для решения оптимальных задач с нелинейными функциями цели
- с) методы используются для решения оптимальных задач, в которых критерии оптимальности и ограничения задаются в виде полиномов
- d) методы используются для решения задач оптимизации процессов, описываемых системами дифференциальных уравнений
- e) методы используются для решения задач оптимизации дискретных многостадийных процессов

Для транспортной задачи, заданной таблицей

казь запа		180	50	90	B ₄ 20
A_1	150	5	7	1	4
A_2	60	10	3	3	8
A_3	130	12	2	4	4

первоначальный план перевозок, полученный с помощью метода северозападного угла, имеет вид...

$$(!) \begin{pmatrix} 150 & 0 & 0 & 0 \\ 30 & 30 & 0 & 0 \\ 0 & 20 & 90 & 20 \end{pmatrix}$$

$$(?) \begin{pmatrix} 40 & 0 & 90 & 20 \\ 60 & 0 & 0 & 0 \\ 80 & 50 & 0 & 0 \end{pmatrix}$$

$$(?) \begin{pmatrix} 40 & 50 & 40 & 20 \\ 30 & 0 & 30 & 0 \\ 110 & 0 & 20 & 0 \end{pmatrix}$$

$$(?) \begin{pmatrix} 60 & 25 & 45 & 20 \\ 60 & 0 & 0 & 0 \\ 60 & 25 & 45 & 0 \end{pmatrix}$$

27. Для транспортной задачи, заданной таблицей

	зака-	B_1	B_2	B_3	B_4
зы запас	сы	180	50	90	20
A_1	150	5	7	1	4
A_2	60	10	3	6	8
A_3	130	12	2	4	11

первоначальный план перевозок, полученный с помощью метода наименьшей стоимости, имеет вид...

$$(!) \begin{pmatrix} 40 & 0 & 90 & 20 \\ 60 & 0 & 0 & 0 \\ 80 & 50 & 0 & 0 \end{pmatrix}$$

$$(?) \begin{pmatrix} 150 & 0 & 0 & 0 \\ 30 & 30 & 0 & 0 \\ 0 & 20 & 90 & 20 \end{pmatrix}$$

$$(?) \begin{pmatrix} 40 & 50 & 40 & 20 \\ 30 & 0 & 30 & 0 \\ 110 & 0 & 20 & 0 \end{pmatrix}$$

$$(?) \begin{pmatrix} 60 & 25 & 45 & 20 \\ 60 & 0 & 0 & 0 \\ 60 & 25 & 45 & 0 \end{pmatrix}$$

28. Суммарная стоимость перевозок по плану, записанному в транспортной таблице

			B_1		B_2		B_3		
	заказы запасы		180		50			20	
A_1	150	40	5	50	7	40	1	20	4
A_2	60	30	10		3	30	6		8
A_3	130	110	12		2	20	4		11

равна...

- (!) 2550
- (?)440
- (?) 2930
- (?) 3240.
- 29. Для плана, заданного транспортной таблицей

, 900,	imoro ipai					,			
	за-	B_1		B_2		B_3		B_4	
казь запа		180		50		90		20	
A_{1}	150		5		7		1		4
		40				90		20	
A_2	60		10		3		6		8
		60							
Δ	130		12		2		4		11
A_3	130	80		50					

потенциал u_2 , соответствующий поставщику A_2 , равен 4. Тогда потенциал v_1 , соответствующий потребителю B_1 , равен ...

- (!) 6
- (?) 56
- (?) 176
- (?) 10.
- 30. Для плана, заданного транспортной таблицей

	за-	B_1		B_2		B_3		B_4	
казь запа		180		50		90		20	
$A_{\rm l}$	150	40	5		7	90	1	20	4
A_2	60	60	10		3		6		8
A_3	130	80	12	50	2		4		11

потенциал v_4 , соответствующий потребителю B_4 , равен (–3). Тогда потенциал u_1 , соответствующий поставщику A_1 , равен ...

- (!)7
- (?) 1
- (?) 16
- (?) 153.
- 31. Для плана, заданного транспортной таблицей

		B_1		B_2		B_3		B_4	
заказы запасы		180)	50		90		20	
A_1	150	40	5		7	90	1	20	4
A_2	60	60	10		3		6		8
A_3	130	80	12	50	2		4		11

потенциал v_3 , соответствующий потребителю B_3 , равен 5. Тогда потенциал v_2 , соответствующий потребителю B_2 , равен ...

- (!) -1
- (?) -2
- (?) 1
- (?) 3.
- 33. Для транспортной задачи, заданной таблицей

	за-	B_1	B_2	B_3
казы запа		60	50	40
A_1	42	2	4	6
A_2	52	4	5	3
A_3	56	3	6	3

оптимальный план перевозок имеет вид...

$$(!) \begin{pmatrix} 42 & 0 & 0 \\ 0 & 50 & 2 \\ 18 & 0 & 38 \end{pmatrix}$$

$$(?) \begin{pmatrix} 42 & 0 & 0 \\ 2 & 50 & 0 \\ 16 & 0 & 40 \end{pmatrix}$$

$$(?) \begin{pmatrix} 2 & 0 & 40 \\ 2 & 50 & 0 \\ 56 & 0 & 0 \end{pmatrix}$$

- (?) оптимальный план не существует.
- 34. Какова цель решения транспортной задачи?
- (?) Выбор оптимального пути на графе.
- (?) Выбор наилучшего транспортного средства.
- (!) Определение количества однородной продукции, перевозимой из пунктов отправления и количества продукции поставляемой в пункты назначения.
- (?) Выявление дефицита продукции в пунктах отправления.
- (?) Выявление дефицита продукции в пунктах назначения.
- **35**. Частным случаем какой модели (задачи, метода) является транспортная задача?
- (?) Метода множителей Лагранжа.
- (?) Задачи о назначениях.
- (?) Задачи о рюкзаке.
- (?) Задачи коммивояжера.
- (!) Задачи линейного программирования.
- 36. Что такое несбалансированная транспортная задача?
- (!) В которой сумма однородных продуктов в пунктах отправления не равна сумме продуктов в пунктах назначения.
- (?) В которой перевозятся два вида продуктов, разного количества.
- (?) В которой сумма расстояний между пунктами отправления не равна сумме расстояний между пунктами назначения.
- (?) В которой число нулей в транспортной таблице не равно числу ненулевых элементов.
- (?) В которой стоимость перевозки существенно отличается от времени.
- 37. Как можно решить прямую транспортную задачу?
- (?) Методом фиктивного разыгрывания.
- (?) С помощью метода множителей Лагранжа.
- (!) Сведением ее к задаче линейного программирования.
- (?) Методами нелинейного программирования.
- (?) Методом Парето-оптимизации.

4.2. Типовые вопросы, выносимые на тестирование (5 семестр)

1. Задача о загрузке рюкзака является задачей программирования нелинейного

параметрического

динамического +

линейного

целочисленного

2. В задачах теории игр говорят, что игра имеет седловую точку, если нижняя цена игры меньше верхней нижняя цена игры равна верхней +

нижняя цена игры больше верхней нижняя цена игры не больше верхней нижняя цена игры не меньше верхней

3. Игра называется игрой с нулевой суммой, если

выигрыш игрока А равен 0

выигрыш игрока В равен 0

сумма выигрышей игроков равна 0 +

выигрыш переходит от одного игрока другому

выигрыш приходит извне игры

4. В задачах теории игр та стратегия, которая соответствует нижней цене игры, называется

максиминной +

минимаксной

оптимальной

нижней

лучшей

5. В задачах теории игр элементы платежной матрицы

положительные

целые

дробные +

любые

неотрицательные

6. В играх с «природой» критерий, учитывающий возможность как наихудшего, так и наилучшего для человека поведения природы, называется критерием Вальда

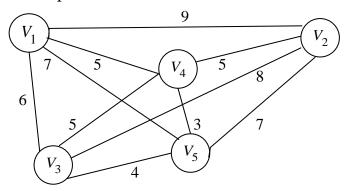
Сэвиджа

Гурвица +

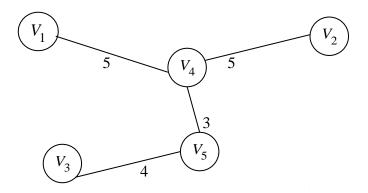
вероятностным критерием

7. Динамическое программирование — это метод оптимизации многошаговых задач в условиях

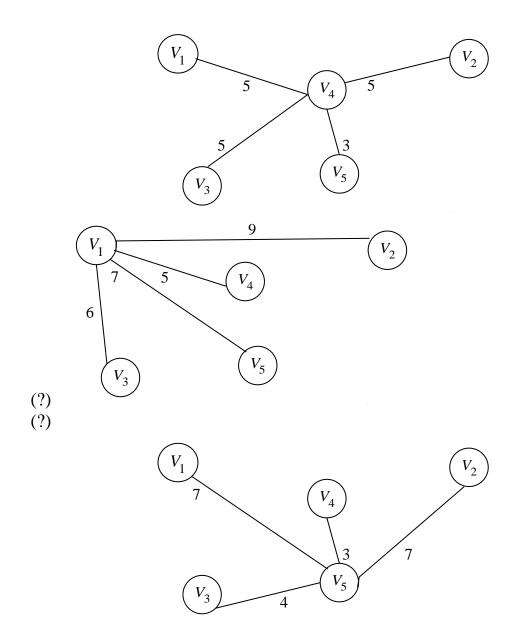
отсутствия обратной связи (последействия) и аддитивности целевой функции + учета обратной связи (последействия) и аддитивности целевой функции отсутствия обратной связи (последействия) и неаддитивности целевой функции

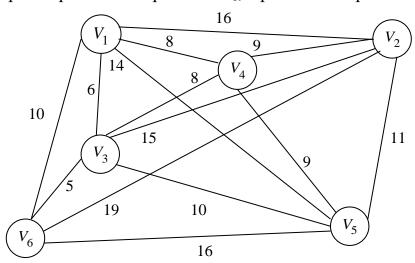

8. Метод динамического программирования применяется для решения многошаговых задач +

задач, которые нельзя представить в виде последовательности отдельных шагов только задач линейного программирования задач макроэкономики


- **9.** Какие критерии выбора решений в условиях риска и неопределенности не являются комбинированными?
- (?) Вальда и Гермейера
- (?) Сэвиджа и Гурвица
- (?) Гурвица и Ходжа-Лемана
- (!) Вальда, Оптимистический и Сэвиджа
- (?) Лапласа-Байеса и Гермейера

- **10**. Какие критерии выбора решений в условиях риска и неопределенности являются комбинированными ?
- (?) Вальда и Гермейера
- (?) Сэвиджа и Гурвица
- (!) Гурвица и Ходжа-Лемана
- (?) Вальда, Оптимистический и Сэвиджа
- (?) Лапласа-Байеса и Гермейера
- **11**. Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Вальда?
- (!) Платежной матрицы
- (?) Платежной матрицы и вероятностей состояний природы
- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ
- **12.** Каких исходных данных достаточно для выбора оптимального решения с помощью Оптимистического критерия ?
- (!) Платежной матрицы
- (?) Платежной матрицы и вероятностей состояний природы
- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ
- **13.** Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Сэвиджа?
- (!) Платежной матрицы
- (?) Платежной матрицы и вероятностей состояний природы
- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ
- **14.** Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Гурвица?
- (?) Платежной матрицы
- (?) Платежной матрицы и вероятностей состояний природы
- (!) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ
- **15.** Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Лапласа-Байеса?
- (?) Платежной матрицы
- (!) Платежной матрицы и вероятностей состояний природы
- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ
- **16.** Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Ходжа-Лемана?
- (?) Платежной матрицы

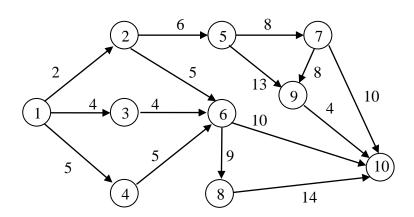

- (?) Платежной матрицы и вероятностей состояний природы
- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (!) Платежной матрицы, вероятностей состояний природы и параметра λ
- **17.** Каких исходных данных достаточно для выбора оптимального решения с помощью критерия Гермейера?
- (?) Платежной матрицы
- (!) Платежной матрицы и вероятностей состояний природы
- (?) Платежной матрицы и параметра λ
- (?) Вероятностей состояний природы и параметра λ
- (?) Платежной матрицы, вероятностей состояний природы и параметра λ
- **18.** Компания кабельного телевидения планирует подключить к своей сети четыре новых района. Расстояние между районами и центром кабельного телевидения указаны на следующем графе, в котором телецентр изображается вершиной V_1 , а районы вершинами V_2 , ..., V_5 .


Тогда наиболее экономичная кабельная сеть имеет вид ... (!)

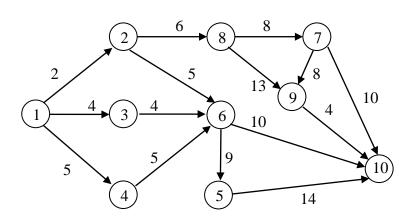
(?)

19. Телекоммуникационная компания планирует подключить к своей сети пять домов. Расстояние между домами и сервером указаны на следующем графе, в котором сервер изображается вершиной V_1 , а районы — вершинами V_2 , ..., V_6 .

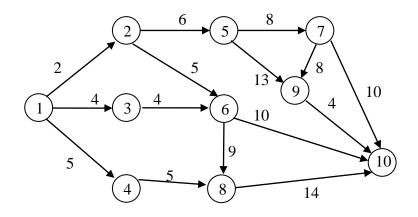
Тогда длина кабеля при наиболее экономичном подключении домов равна ...

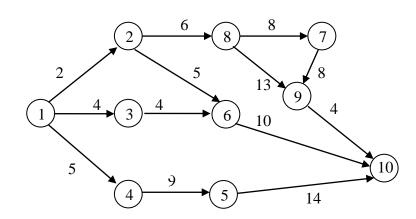

- (!) 37
- (?) 36
- (?) 41
- (?) 29

20. Технологический комплекс производства продукции состоит из 10 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей


№ п.п.	Шифр операции	Продолжительность операции
1	1 2	2
2	13	4
3	1	5
4	2 5	6
5	2 56	5
6	3 6	4
7	4	5
8	5 9	13
9	5 57	8
10	<u>6</u> 8	9
11	6 30	10
12	7	10
13	7	8
14	8	14
15	9 10	4

Тогда сетевым графиком для этого комплекса будет ...


(!)


(?)

(?)

21. Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей:

№ п. п.	Шифр операции	Продолжительность операции
1	1 >2	2
2	13	5
3	<u> </u>	6
4	25	4
5	35	8
6	3 6	3
7	4	7
8	4	6
9	<u>5</u> 6	6
10	59	8
11	6	3
12	<u>6</u> 8	10
13	6 59	4
14	7	8
15	7	4
16	8 70	9
17	9 51	5
18	9 512	7
19	10 12	4
20	11	8

Тогда критическое время равно ...

- (!) 43 часа
- (?) 19 часов
- (?) 2 часа

(?) 10 часов

22. Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей

№ п. п.	Шифр операции	Продолжительность операции
1	1 >2	2
2	1 3	5
3	1 5	6
4	2 5	4
5	3 5	8
6	3 6	3
7	4	7
8	4	6
9	5_56	6
10	5 59	8
11	6 57	3
12	6 8	10
13	6 59	4
14	7	8
15	7	4
16	8 30	9
17	9 1	5
18	9 12	7
19	10 12	4
20	11 512	8

Тогда критическим путем является путь ...

$$(!)$$
 $1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 10 \rightarrow 12$

$$(?) 1 \rightarrow 3 \rightarrow 6 \rightarrow 7 \rightarrow 10 \rightarrow 12$$

$$(?) \ 1 \rightarrow 3 \rightarrow 6 \rightarrow 9 \rightarrow 12$$

$$(?) 1 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 10 \rightarrow 12$$

23. Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей

№ п. п.	Шифр операции	Продолжительность операции
1	1 2	2
2	13	5
3	1	6
4	2 5	4
5	35	8
6	3	3
7	4	7
8	4	6
9	56	6
10	59	8
11	6 57	3
12	<u>6</u> >8	10
13	6 59	4
14	7——————————————————————————————————————	8
15	7	4
16	8 30	9
17	9 \$1	5
18	9 512	7
19	10 12	4
20	11	8

Тогда критической операцией является ...

- $(!) 5 \to 6$
- $(?) \ 6 \to 8$
- $(?) \ 6 \rightarrow 9$
- $(?) 4 \rightarrow 7$
- **24.** Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей

№ п.п.	Шифр операции	Продолжительность операции
1	1 >2	2
2	1 3	5
3	1	6
4	2 5	4
5	3 5	8
6	3	3
7	4	7
8	4	6
9	56	6
10	59	8
11	6-57	3
12	6 8	10
13	6 59	4
14	7	8
15	7	4
16	8 30	9
17	9 1	5
18	9 12	7
19	10 12	4
20	11	8

Тогда некритической операцией является ...

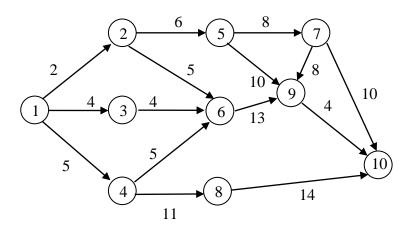
- $(!) 6 \to 8$
- $(?)\ 10 \to 12$
- $(?) \ 3 \to 5$
- $(?) \ 1 \to 3$
- **25.** Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей

№ п.п.	Шифр операции	Продолжительность операции
1	1 >2	2
2	13	5
3	1	6
4	2	4
5	3 5	8
6	36	3
7	4	7
8	4	6
9	5_56	6
10	59	8
11	6	3
12	6 8	10
13	<u>6</u> 9	4
14	7——————————————————————————————————————	8
15	7	4
16	<u>8</u> 30	9
17	9 31	5

18	9 12	7
19	10 512	4
20	11 12	8

Тогда некритическим путем является путь ...

- $(!) 6 \to 9 \to 12$
- $(?) \ 1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 10 \rightarrow 12$
- $(?) 8 \to 10 \to 12$
- $(?) \ 5 \rightarrow 6 \rightarrow 9 \rightarrow 11 \rightarrow 12$
- 26. Некритическим путем в сетевом графике является путь, ...
 - (!) начальный и конечный узлы которого лежат на критическом пути, а составляющие его операции являются некритическими;
 - (?) не являющийся критическим;
 - (?) который не ведет из источника в сток;
 - (?) состоящий из некритических операций.
- 27. Свободный резерв времени на критической операции сетевого графика ...
 - (!) равен нулю;
 - (?) положителен;
 - (?) является максимальным;
 - (?) является минимальным.
- 28. Свободный резерв времени на некритической операции сетевого графика ...
 - (!) неотрицателен;
 - (?) равен нулю;
 - (?) является максимальным;
 - (?) является минимальным.
- **29.** Технологический комплекс производства продукции состоит из 12 узлов. Последовательность выполнения операций и их продолжительность в часах заданы таблицей


таолицеи		
№ п. п.	Шифр операции	Продолжительность операции
1	1 >2	2
2	1 3	5
3	1	6
4	25	4
5	3 5	8
6	36	3
7	4	7
8	4	6
9	5_56	6
10	5 59	8
11	6	3
12	6 8	10
13	6 59	4
14	7	8
15	7	4
16	8 30	9
17	9 51	5
18	9 512	7
19	10 \(\frac{1}{2} \)	4
20	11 512	8
		<u> </u>

Тогда свободный резерв времени на операции $5 \rightarrow 9$ равен...

- (!) 2 часа
- (?) 1час

- (?) Зчаса
- (?) 0 часов

30. На рисунке

изображена сеть с заданными длинами дуг. Тогда кратчайшим путем, ведущим из источника в сток, является путь...

- (!) $1 \rightarrow 2 \rightarrow 5 \rightarrow 9 \rightarrow 10$
- $(?) \ 1 \rightarrow 4 \rightarrow 8 \rightarrow 10$
- $(?) \ 1 \rightarrow 4 \rightarrow 6 \rightarrow 9 \rightarrow 10$
- $(?) 1 \rightarrow 2 \rightarrow 5 \rightarrow 7 \rightarrow 10.$

4.3. Типовые вопросы, выносимые на зачет с оценкой (4 семестр)

- 1. Задачи на минимум.
- 2. Гладкие конечномерная задача без ограничений.
- 3. Теорема Ферма как необходимое условие локального экстремума.
- 4. Гессиан функции.
- 5. Необходимые и достаточные условия экстремума второго порядка.
- 6. Положительная и отрицательная определенность квадратичной формы.
- 7. Критерий Сильвестра.
- 8. Конечномерные задачи с ограничениями типа равенства
- 9. Конечномерные задачи с ограничениями типа неравенства.
- 10. Формулировка теоремы о неявной функции для линейной системы уравнений.
- 11. Формулировка теоремы о неявной функции для нелинейной системы уравнений.
- 12. Формулировка принципа Лагранжа для задач со смешанными ограничениями типа равенства
- 13. Формулировка принципа Лагранжа для задач со смешанными ограничениями типа неравенства.
- 14. Достаточные условия оптимальности в задачах с ограничениями.
- 15.Постановка задачи об определении портфеля ценных бумаг Марковица—Тобина с наименьшим риском при заданном среднем уровне дохода.
- 16. Алгоритм решения задачи с использованием принципа Лагранжа.

- 17. Формулировка задачи линейного программирования (ЛП).
- 18.Стандартная (нормальная) и каноническая формы представления задачи ЛП и сведение к ним.
- 19. Свойства допустимого множества и оптимального решения в задаче ЛП.
- 20.Основные представления о методах решения задач ЛП, основанных на направленном переборе вершин (симплекс-метод и др.).
- 21. Двойственные задачи линейного программирования.
- 22. Теоремы двойственности.
- 23.Интерпретация двойственных переменных.
- 24. Анализ чувствительности оптимального решения к параметрам задачи линейного программирования.
- 25. Некоторые специальные задачи линейного программирования (транспортная, производственно-транспортная и т.д.).

4.4 Типовые вопросы, выносимые на экзамен (5 семестр)

- 1. Определение антагонистической игры в нормальной форме.
- 2. Равновесная ситуация. Чистые стратегии.
- 3. Оптимальные смешанные стратегии и их основные свойства.
- 4. Поиск оптимальных стратегий с помощью решения задач линейного программирования.
- 5. Понятие о корпоративных играх и о различных определениях их решений.
- 6. Равновесие по Нэшу.
- 7. Парето-оптимальность.
- 8. Задача выбора решений в условиях неопределенности.
- 9. Критерии выбора решений в условиях неопределенности (принцип гарантированного результата, критерий Гурвица, критерий Байеса-Лапласа, критерий Сэвиджа).
- 10. Применение принципа гарантированного результата в задачах экономического планирования.
- 11. Множество допустимых гарантирующих программ.
- 12. Наилучшая гарантирующая программа.
- 13. Принятие решение при случайных параметрах.
- 14. Вероятностная информация о параметрах.
- 15. Принятие решений на основе математического ожидания.
- 16.Случайность и риск. Учет склонности к риску.
- 17. Происхождение и постановка задачи многокритериальной оптимизации.
- 18. Множество достижимых критериальных векторов.
- 19. Доминирование и оптимальность по Парето.
- 20. Эффективные решения и пареттова граница.
- 21. Понятие лица, принимающего решение.
- 22. Основные типы методов решения задач многокритериальной оптимизации.
- 23. Методы аппроксимации пареттовой границы.
- 24. Динамические задачи оптимизации.
- 25. Примеры: простейшая динамическая модель производства и задача поиска оптимальной производственной программы.

- 26. Многошаговые и непрерывные модели.
- 27. Управление и переменная состояния в динамических моделях.
- 28. Задание критерия в динамических задачах оптимизации.
- 29. Принципы построения динамического управления: построение программной траектории и использование обратной связи.
- 30. Динамическое программирование в многошаговых задачах оптимизации.
- 31. Принцип оптимальности.
- 32. Функция Беллмана. Уравнение Беллмана в многошаговых задачах оптимизации.

ИНСТИТУТ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ КАФЕДРА МАТЕМАТИКИ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ «МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ» (Приложение 2 к рабочей программе)

Направление подготовки: 01.03.02 Прикладная математика и информатика

Профиль: Искусственный интеллект и управление в ракетно-космических си-

стемах

Уровень высшего образования: бакалавр

Форма обучения: очная

Королев 2021

1. Общие положения

Целью изучения дисциплины является

- Развить системное мышление слушателей путем детального анализа подходов к математическому моделированию и сравнительного анализа разных типов моделей;
- Ознакомить слушателей с математическими свойствами моделей и методов оптимизации, которые могут использоваться при анализе и решении широкого спектра экономических задач.

Задачи дисциплины:

- освоение студентами базовых знаний в области построения математических моделей.
- получение студентами умений и навыков проведения математического моделирования и анализа в области их профессиональной деятельности.

2. Указания по проведению практических занятий

Тема 1. Гладкая конечномерная оптимизация.

Практическое занятие 1. Гладкие конечномерная задача без ограничений.

Практическое занятие 2. Достаточные условия минимума. Критерий Сильвестра.

Тема 2. Задача нелинейного программирования.

Практическое занятие 1. Конечномерные задачи с ограничениями типа равенства и неравенства. Принцип Лагранжа в задачах с ограничениями в форме равенств.

Практическое занятие 2. Достаточные условия экстремума. Принцип Лагранжа для задач со смешанными ограничениями типа равенства и неравенства.

Практическое занятие 3. Решение задачи Марковица - Тобина о портфеле ценных бумаг наименьшего риска при заданной средней доходности.

Тема 3. Задача линейного программирования.

Практическое занятие 1. Графическая интерпретация системы линейных уравнений и неравенств в конечномерном пространстве. Метод полных жордановых исключений преобразования систем линейных уравнений. Симплекс метод. Запись задачи линейного программирования в виде симплекс таблице. Правило выбора разрешающего элемента симплекс преобразования.

Практическое занятие 2. Нахождение опорного решения. Проверка оптимальности опорного решения. Двойственные задачи линейного программирования. Анализ чувствительности оптимального решения к параметрам задачи линейного программирования.

Практическое занятие 3. Транспортная задача. Метод потенциалов. Правило северо-западного угла и наименьшей стоимости для составления начального плана поставок. Открытые и закрытые модели.

Тема 4. Теория игр

Практическое занятие 1. Равновесная ситуация. Чистые стратегии. Принцип минимакса. Оптимальные смешанные стратегии. Методы решения матричных игр: аналитический — для игры 2×2 и графический — для игр 2×2 , $2\times n$, $m\times2$.

Практическое занятие 2. Сведение решения матричной игры типа $m \times n$ к решению двойственных задач линейного программирования.

Тема 5. Оптимизация в условиях неопределенности.

Практическое занятие 1. Задача выбора решений в условиях полной неопределенности. Правило максимального пессимизма Вальда. Понятие риска и правило Сэвиджа минимального риска. Правило Гурвица.

Практическое занятие 2. Задача выбора решений в условиях частичной неопределенности.

Тема 6. Основные понятия многокритериальной оптимизации.

Практическое занятие 1. Задачи многокритериальной оптимизации. Доминирование и оптимальность по Парето. Сетевые задачи. Критические и некритические пути. Раннее начало и позднее окончание операций. Полный и свободный резервы.

Практическое занятие 2. Графическое и табличное решение задачи расчета сетевой модели. Определение ресурсов и последовательное улучшение сетевого плана. Построение календарного графика и распределение ресурсов.

Тема 7. Оптимизация динамических систем.

Практическое занятие 1. Динамические задачи оптимизации. Задача об определении оптимального плана реконструкции предприятий при ограничениях на общую сумму вложений.

Практическое занятие 2. Задачи о загрузке, задачи о надежности. Функция Беллмана. Уравнение Беллмана в многошаговых задачах оптимизации. Решение задач динамического программирования.

3. Указания по проведению лабораторного практикума Не предусмотрено учебным планом.

4. Указания по проведению самостоятельной работы студентов

Цель самостоятельной работы: подготовка к лекционным и практическим занятиям, обзорам по предложенным темам, подготовка к промежуточной аттестации, выполнение и защиту контрольной работы, подготовку к зачету и экзамену, а также подготовка бакалавров к самостоятельному научному творчеству.

Виды самостоятельной работы представлены в таблице 1.

№ п/п	Наименование бло- ка (раздела) дисци- плины	Виды СРС
1	Темы 1-7	 Подготовка к практическим занятиям по материалам лекций и учебной литературы. Выполнение практических заданий Самостоятельное изучение некоторых вопросов дисциплины.

Вопросы для самостоятельной работы

- 1. Решение систем линейных уравнений итерационными методами (принцип сжимающих отображений, метод Зейделя).
- 2. Линейные операторы в Υ^n . Собственные числа и собственные векторы.
- 3. Квадратичные формы в Υ^n .
- 4. Теорема о неявной функции для системы уравнений в конечномерном пространстве. Множество касательных векторов. Базис. Ограничение квадратичной формы на подпространство.
- 5. Выпуклая оптимизация. Теорема Куна-Таккера.
- 6. Множество критических вариаций в задачах с ограничениями в форме неравенств.
- 7. Достаточные условия локального экстремума в задачах со смешанными ограничениями.
- 8. Марковские цепи (динамические системы с дискретным временем и конечным числом состояний). Уравнение Колмогорова-Чепмена. Управляемые марковские цепи. Байесовский подход к определению оптимального решения. Уравнение Беллмана.
- 9. Решение задачи составления рациона методами линейного программирования.
- 10. Решение задачи о распределении ресурсов методами линейного программирования.
- 11. Решение задачи о загрузке станков методами линейного программирования.
- 12. Решение транспортной задачи по критерию времени.
- 13. Решение задачи оптимального раскроя материалов методами целочисленного программирования.
- 14. Решение задачи оптимального использования оборудования методами целочисленного программирования.
- 15. Решение задачи распределения ресурсов по неоднородным этапам материалов методами динамического программирования.
- 16. Решение задачи о резервировании ресурсов методами динамического программирования.
- 17. Решение задачи распределения ресурсов между тремя и более отраслями методами динамического программирования.
- 18. Распределение ресурсов со вложением доходов в производство.
- 19. Решение задачи динамического программирования с учетом предыстории процесса.

- 20. Задачи динамического программирования, не связанные со временем.
- 21. Задачи динамического программирования с мультипликативным критерием.
- 22. Задача распределения средств для повышения надежности технического устройства.
- 23. Бесконечношаговый процесс динамического программирования.
- 24. Двойственность в квадратичном программировании.
- 25. Градиентные методы решения задач нелинейного программирования.

5. Указания по проведению контрольных работ для студентов факультета заочного обучения

Учебным планом не предусмотрено

6. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Математические методы и модели исследования операций / ред. В.А. Колемаев. Москва: Юнити-Дана, 2015. 592 с. : ил., табл., граф. Режим доступа: по подписке.
 - URL: http://biblioclub.ru/index.php?page=book&id=114719
- 2. Шапкин А.С. Математические методы и модели исследования операций: учебник / А.С. Шапкин, В.А. Шапкин. 7-е изд. Москва: Дашков и К°, 2019. 398 с.: ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=573373
- 3. Донкова И.А. Исследование операций и методы оптимизации: учебное пособие: [16+] / И.А. Донкова; Тюменский государственный университет. Тюмень: Тюменский государственный университет, 2017. 196 с.: ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=572102

Дополнительная литература:

- 1. Ловянников Исследование операций: учебное пособие Д.Г. Д.Г. Ловянников, И.Ю. Глазкова; Министерство образования РФ, Федеральное государственное автономное образовательное учреждение высшего образования «Северо-Кавказский федеральный университет». – Ставрополь: 110 c.: ил. – Режим доступа: по подписке. СКФУ, 2017. – URL: http://biblioclub.ru/index.php?page=book&id=467012
- 2. Исследование операций: учебное пособие / сост. А.С. Адамчук, С.Р. Амироков, А.М. Кравцов; Министерство образования и науки Российской Федерации и др. Ставрополь: СКФУ, 2015. 178 с. : ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=457348
- 3. Самков Т.Л. Математические методы исследования экономики и математическое программирование: учебное пособие: [16+] / Т.Л. Самков; Новосибирский государственный технический университет. Новосибирск: Новосибирский государственный технический университет, 2018. 115 с.: ил., табл. Режим доступа: по подписке. —

URL: http://biblioclub.ru/index.php?page=book&id=575280

7.Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Интернет-ресурсы:

http://www.znanium.com/ - электронно-библиотечная система

http://www.e.lanbook.com/ - ЭБС Издательства "ЛАНЬ"

http://www.rucont.ru/- электронно-библиотечная система

http://www.biblioclub.ru/ -университетская библиотека онлайн

8.Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень программного обеспечения: MSOffice

Информационные справочные системы: Электронные ресурсы образовательной среды Университета